How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins.
View Article and Find Full Text PDFAcyl carrier proteins (ACPs) are central hubs in polyketide and fatty acid biosynthetic pathways, but the fast motions of the ACP's phosphopantetheine (Ppant) arm make its conformational dynamics difficult to capture using traditional spectroscopic approaches. Here we report that converting the terminal thiol of Escherichia coli ACP's Ppant arm into a thiocyanate activates this site to form a selective cross-link with the active site cysteine of its partner ketoacyl synthase (FabF). The reaction releases a cyanide anion, which can be detected by infrared spectroscopy.
View Article and Find Full Text PDFMicroorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes.
View Article and Find Full Text PDF