Publications by authors named "Kathleen J Newton"

The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes.

View Article and Find Full Text PDF

Maize hybrids exhibiting heterosis (hybrid vigor) were generated from inbred parents with increasing genetic distance. B73 was used as the common female parent in crosses with N192 (low heterosis), MO17 (high-heterosis 1), and NC350 (high-heterosis 2). Total and mitochondria-enriched proteomes were analyzed from ear shoots of field-grown hybrids and their inbred parents.

View Article and Find Full Text PDF

The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp.

View Article and Find Full Text PDF

The phenomenon of hybrid vigor (heterosis) has long been harnessed by plant breeders to improve world food production. However, the changes that are essential for heterotic responses and the mechanisms responsible for heterosis remain undefined. Large increases in biomass and yield in high-heterosis hybrids suggest that alterations in bioenergetic processes may contribute to heterosis.

View Article and Find Full Text PDF

Cytoplasmic male sterility (CMS) in plants is usually associated with the expression of specific chimeric regions within rearranged mitochondrial genomes. Maize CMS-S plants express high amounts of a 1.6-kb mitochondrial RNA during microspore maturation, which is associated with the observed pollen abortion.

View Article and Find Full Text PDF

S-type cytoplasmic male sterility (CMS-S) in maize is associated with high levels of a 1.6-kb RNA in mitochondria. This RNA contains two chimeric open reading frames (ORFs), orf355 and orf77.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line.

View Article and Find Full Text PDF

Flowering plants harbor the largest mitochondrial genomes reported so far. At present, the nucleotide sequences of 15 mitochondrial genomes from seven angiosperm species are available, making detailed comparative analysis feasible. The gene content is variable among the species, but the most striking feature is the fluidity of intergenic regions, where species-specific sequences predominate.

View Article and Find Full Text PDF

We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.

View Article and Find Full Text PDF

Interorganellar signaling interactions are poorly understood. The maize non-chromosomal stripe (NCS) mutants provide models to study the requirement of mitochondrial function for chloroplast biogenesis and photosynthesis. Previous work suggested that the NCS6 mitochondrial mutation, a cytochrome oxidase subunit 2 (cox2) deletion, is associated with a malfunction of Photosystem I (PSI) in defective chloroplasts of mutant leaf sectors (Gu et al.

View Article and Find Full Text PDF

The P2 line of maize (Zea mays) is characterized by mitochondrial genome destabilization, initiated by recessive nuclear mutations. These alleles alter copy number control of mitochondrial subgenomes and disrupt normal transfer of mitochondrial genomic components to progeny, resulting in differences in mitochondrial DNA profiles among sibling plants and between parents and progeny. The mitochondrial DNA changes are often associated with variably defective phenotypes, reflecting depletion of essential mitochondrial genes.

View Article and Find Full Text PDF

The NB mitochondrial genome found in most fertile varieties of commercial maize (Zea mays subsp. mays) was sequenced. The 569,630-bp genome maps as a circle containing 58 identified genes encoding 33 known proteins, 3 ribosomal RNAs, and 21 tRNAs that recognize 14 amino acids.

View Article and Find Full Text PDF

A report on the Keystone Symposium 'Comparative Genomics of Plants', Taos, USA, 4-9 March 2004.

View Article and Find Full Text PDF

The consequences of mitochondrial dysfunction are not limited to the development of oxidative stress or initiation of apoptosis but can result in the establishment of stress tolerance. Using maize mitochondrial mutants, we show that permanent mitochondrial deficiencies trigger novel Ca(2+)-independent signaling pathways, leading to constitutive expression of genes for molecular chaperones, heat shock proteins (HSPs) of different classes. The signaling to activate hsp genes appears to originate from a reduced mitochondrial transmembrane potential.

View Article and Find Full Text PDF

We have examined the expression of three alternative oxidase (aox) genes in two types of maize mitochondrial mutants. Nonchromosomal stripe (NCS) mutants carry mitochondrial DNA deletions that affect subunits of respiratory complexes and show constitutively defective growth. Cytoplasmic male-sterile (CMS) mutants have mitochondrial DNA rearrangements, but they are impaired for mitochondrial function only during anther development.

View Article and Find Full Text PDF