Background: Longer pulmonary transit time (PTT) is closely associated with hemodynamic abnormalities. However, the implications on heart failure (HF) risk have not been investigated broadly in patients with diverse cardiac conditions. In this study we examined the long-term risk of HF hospitalization associated with longer PTT in a large prospective cohort with a broad spectrum of cardiac conditions.
View Article and Find Full Text PDFVolumetric measurements with cardiac magnetic resonance imaging (MRI) are effective for evaluating heart failure (HF) with systolic dysfunction that typically induces a lower ejection fraction (EF) than normal (<50%) while they are not sensitive to diastolic dysfunction in HF patients with preserved EF (≥50%). This work is to investigate whether HF evaluation with cardiac MRI can be improved with real-time MRI feature tracking. In a cardiac MRI study, we recruited 16 healthy volunteers, 8 HF patients with EF < 50% and 10 HF patients with preserved EF.
View Article and Find Full Text PDFCardiac magnetic resonance imaging (MRI) has been largely dependent on retrospective cine for data acquisition. Real-time imaging, although inferior in image quality to retrospective cine, is more informative about motion dynamics. We herein developed a real-time cardiac MRI approach to temporospatial characterization of left ventricle (LV) and right ventricle (RV) wall motion.
View Article and Find Full Text PDFIn cardiology, magnetic resonance imaging (MRI) provides a clinical standard for measuring ventricular volumes. Owing to their reliability, volumetric measurements with cardiac MRI have become an essential tool for quantitative assessment of ventricular function. However, as volumetric indices are indirectly related to myocardial motion that drives ventricular filling and ejection, cardiac MRI cannot provide comprehensive evaluation of ventricular performance.
View Article and Find Full Text PDFBackground: Myocardial fibrosis and left ventricular (LV) longitudinal strain are independently associated with adverse clinical outcomes. However, the relationship between tissue properties and strain indices as well as their collective impact on outcomes are yet to be fully elucidated. We aim to investigate the relationship between LV global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) with extracellular volume (ECV) and their collective impact.
View Article and Find Full Text PDFBackground: Cardiac injury is common in COVID-19 patients and is associated with increased mortality. However, it remains unclear if reduced cardiac function is associated with cardiac injury, and additionally if mortality risk is increased among those with reduced cardiac function in COVID-19 patients.
Hypothesis: The aim of this study was to assess cardiac function among COVID-19 patients with and without biomarkers of cardiac injury and to determine the mortality risk associated with reduced cardiac function.
Magnetic resonance imaging (MRI) can measure cardiac response to exercise stress for evaluating and managing heart patients in the practice of clinical cardiology. However, exercise stress cardiac MRI have been clinically limited by the ability of available MRI techniques to quantitatively measure fast and unstable cardiac dynamics during exercise. The presented work is to develop a new real-time MRI technique for improved quantitative performance of exercise stress cardiac MRI.
View Article and Find Full Text PDFThis work aims to demonstrate that radial acquisition with k-space variant reduced-FOV reconstruction can enable real-time cardiac MRI with an affordable computation cost. Due to non-uniform sampling, radial imaging requires k-space variant reconstruction for optimal performance. By converting radial parallel imaging reconstruction into the estimation of correlation functions with a previously-developed correlation imaging framework, Cartesian k-space may be reconstructed point-wisely based on parallel imaging relationship between every Cartesian datum and its neighboring radial samples.
View Article and Find Full Text PDFBackground: Myocardial strain is increasingly recognized as an important assessment for myocardial function. In addition, it also improves outcome prediction. However, there is lack of standardization in strain evaluation by cardiovascular magnetic resonance (CMR).
View Article and Find Full Text PDF