Sympatric species are often locally adapted to distinct microhabitats. However, temporal variation may cause local maladaptation and species boundary breakdown, especially during extreme climatic events leading to episodic selection. Repeated reciprocal transplants can reveal the interplay between short and long-term patterns of natural selection.
View Article and Find Full Text PDFWhile hybridization was viewed as a hindrance to adaptation and speciation by early evolutionary biologists, recent studies have demonstrated the importance of hybridization in facilitating evolutionary processes. However, it is still not well-known what role spatial and temporal variation in natural selection play in the maintenance of naturally occurring hybrid zones. To identify whether hybridization is adaptive between two closely related monkeyflower species, and , we performed repeated reciprocal transplants between natural hybrid and pure species' populations.
View Article and Find Full Text PDFOrganisms can adapt to environmental heterogeneity through two mechanisms: (1) expression of population genetic variation or (2) phenotypic plasticity. In this study we investigated whether patterns of variation in both trait means and phenotypic plasticity along elevational and latitudinal clines in a North American endemic plant, , were consistent with local adaptation. We grew inbred lines of from across the species' range in two common gardens varying in day length to measure mean and plastic trait expression in several traits previously shown to be involved in adaptation to rocky outcrop microhabitat: flowering time, size-related traits, and leaf shape.
View Article and Find Full Text PDFSpatially and temporally varying selection can maintain genetic variation within and between populations, but it is less well known how these forces influence divergence between closely related species. We identify the interaction of temporal and spatial variation in selection and their role in either reinforcing or eroding divergence between two closely related species. Using repeated reciprocal transplant experiments with advanced generation hybrids, we compare the strength of selection on quantitative traits involved in adaptation and reproductive isolation in and between two years with dramatically different water availability We found strong divergent habitat-mediated selection on traits in the direction of species differences during a drought in 2013, suggesting that spatially varying selection maintains species divergence.
View Article and Find Full Text PDFParallel changes in genotype and phenotype in response to similar selection pressures in different populations provide compelling evidence of adaptation. House mice (Mus musculus domesticus) have recently colonized North America and are found in a wide range of environments. Here we measure phenotypic and genotypic differentiation among house mice from five populations sampled across 21° of latitude in western North America, and we compare our results to a parallel latitudinal cline in eastern North America.
View Article and Find Full Text PDFHouse mice (Mus musculus) arrived in the Americas only recently in association with European colonization (~400-600 generations), but have spread rapidly and show evidence of local adaptation. Here, we take advantage of this genetic model system to investigate the genomic basis of environmental adaptation in house mice. First, we documented clinal patterns of phenotypic variation in 50 wild-caught mice from a latitudinal transect in Eastern North America.
View Article and Find Full Text PDFUnderstanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus' adaptation to granite outcrops compared to its sympatric, mesic-adapted progenitor, Mimulus guttatus. We use fine-scale measurements of soil moisture and herbivory to examine differences in selective forces between the species' habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M.
View Article and Find Full Text PDFIdentifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes.
View Article and Find Full Text PDFThe genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci.
View Article and Find Full Text PDFBackground And Aims: The genetic basis of leaf shape has long interested botanists because leaf shape varies extensively across the plant kingdom and this variation is probably adaptive. However, knowledge of the genetic architecture of leaf shape variation in natural populations remains limited. This study examined the genetic architecture of leaf shape diversification among three edaphic specialists in the Mimulus guttatus species complex.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2014
Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range.
View Article and Find Full Text PDF