This paper applies information theoretic principles to the investigation of physical human-robot interaction. Drawing from the study of human perception and neural encoding, information theoretic approaches offer a perspective that enables quantitatively interpreting the body as an information channel, and bodily motion as an information-carrying signal. We show that ergodicity, which can be interpreted as the degree to which a trajectory encodes information about a task, correctly predicts changes due to reduction of a person's existing deficit or the addition of algorithmic assistance.
View Article and Find Full Text PDFThe goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine.
View Article and Find Full Text PDF