Leucine-rich alpha-2-glycoprotein-1 (LRG1) has been shown to compete with apoptosis activating factor-1 (Apaf-1) for binding cytochrome c (Cyt c) and could play a role in inhibition of apoptosis. Employing MCF-7 breast cancer cells, we report that intracellular LRG1 does protect against apoptosis. Thus, cells transfected with the lrg1 gene and expressing higher levels of LRG1 were more resistant to hydrogen peroxide-induced apoptosis than parental cells, while cells in which LRG mRNA was knocked down by short hairpin (sh) RNA-induced degradation were more sensitive.
View Article and Find Full Text PDFProtein phosphatase I (PP1) is an essential eukaryotic serine/threonine phosphatase required for many cellular processes, including cell division, signaling, and metabolism. In mammalian cells there are three major isoforms of the PP1 catalytic subunit (PP1alpha, PP1beta, and PP1gamma) that are over 90% identical. Despite this high degree of identity, the PP1 catalytic subunits show distinct localization patterns in interphase cells; PP1alpha is primarily nuclear and largely excluded from nucleoli, whereas PP1gamma and to a lesser extent PP1beta concentrate in the nucleoli.
View Article and Find Full Text PDFProteins that contain the recently described MIF4G and/or MA3 domains function in translation, cell growth, proliferation, transformation, and apoptosis. Examples of MIF4G/MA3 containing proteins and their functions include eIF4G, which serves as a scaffold for assembly of factors required for translation initiation, programmed cell death protein 4 (Pdcd4) that inhibits translation and functions as a tumor suppressor, and NMD2, which is essential for nonsense-mediated mRNA decay. MIF4G and MA3 domains serve as binding sites for one or more isoforms of the eIF4A family of ATP-dependent DEAD-box RNA helicases that are required for translation and for nonsense-mediated decay.
View Article and Find Full Text PDF