Publications by authors named "Kathleen Caron"

Background: Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how cardiac lymphatic vessels in two different mouse strains respond to pregnancy, with a focus on the physiological changes in the heart.
  • C57BL/6J mice show no significant changes in lymphatic vasculature during late pregnancy, despite experiencing cardiac hypertrophy.
  • Conversely, BALB/cJ mice do not exhibit cardiac hypertrophy but show notable decreases in lymphatic length and branching during pregnancy, highlighting the complex interactions of genetics and physiological responses in cardiac lymphatic remodeling.
View Article and Find Full Text PDF

The adhesion receptor vascular endothelial (VE)-cadherin transduces an array of signals that modulate crucial lymphatic cell behaviors including permeability and cytoskeletal remodeling. Consequently, VE-cadherin must interact with a multitude of intracellular proteins to exert these functions. Yet, the full protein interactome of VE-cadherin in endothelial cells remains a mystery.

View Article and Find Full Text PDF

Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs.

View Article and Find Full Text PDF

Recently developed antimigraine therapeutics targeting calcitonin gene-related peptide (CGRP) signaling are effective, though their sites of activity remain elusive. Notably, the lymphatic vasculature is responsive to CGRP signaling, but whether meningeal lymphatic vessels (MLVs) contribute to migraine pathophysiology is unknown. Mice with lymphatic vasculature deficient in the CGRP receptor (CalcrliLEC mice) treated with nitroglycerin-mediated (NTG-mediated) chronic migraine exhibit reduced pain and light avoidance compared with NTG-treated littermate controls.

View Article and Find Full Text PDF

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the β-adrenergic receptor (β1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits β1AR-mediated cAMP production.

View Article and Find Full Text PDF

Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine.

View Article and Find Full Text PDF

In Brief: Healthy development of the placenta is dependent on trophoblast cell migration and reduced oxidative stress presence. This article describes how a phytoestrogen found in spinach and soy causes impaired placental development during pregnancy.

Abstract: Although vegetarianism has grown in popularity, especially among pregnant women, the effects of phytoestrogens in placentation lack understanding.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools.

View Article and Find Full Text PDF

Endocardial cells lining the heart lumen are coronary vessel progenitors during embryogenesis. Re-igniting this developmental process in adults could regenerate blood vessels lost during cardiac injury, but this requires additional knowledge of molecular mechanisms. Here, we use mouse genetics and scRNA-seq to identify regulators of endocardial angiogenesis and precisely assess the role of CXCL12/CXCR4 signaling.

View Article and Find Full Text PDF

The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease.

View Article and Find Full Text PDF

Numerous studies have focused on the molecular signaling pathways that govern the development and growth of lymphatics in the hopes of elucidating promising druggable targets. G protein-coupled receptors (GPCRs) are currently the largest family of membrane receptors targeted by FDA-approved drugs, but there remain many unexplored receptors, including orphan GPCRs with no known biological ligand or physiological function. Thus, we sought to illuminate the cadre of GPCRs expressed at high levels in lymphatic endothelial cells and identified four orphan receptors: GPRC5B, AGDRF5/GPR116, FZD8 and GPR61.

View Article and Find Full Text PDF
Article Synopsis
  • Lymphatic vessels play a crucial role in transporting interstitial fluid, immune cells, lipids, and drugs, making their development and function important for understanding various clinical issues like chronic inflammation, cancer, and targeted drug delivery.
  • The study explores how lymphatic capillary branching differs from blood capillaries, revealing that lymphatic vessels adhere to a modified version of Murray's Law, with a unique exponent of ~1.45, implying a smaller size for daughter vessels compared to parent vessels.
  • Through computational fluid dynamics modeling, the research suggests that the lymphatic system's branching structure may be optimized for specific functions such as lymph mixing and immune cell transport, which could enhance the effectiveness of drug delivery via lymphatics.
View Article and Find Full Text PDF

Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems.

View Article and Find Full Text PDF

Background: The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling.

View Article and Find Full Text PDF

Preterm birth is associated with immaturity of several crucial physiological functions notably those prevailing in the lung and kidney. Recently, a steroid secretion deficiency was identified in very preterm neonates, associated with a partial yet transient deficiency in 11β-hydroxylase activity, sustaining cortisol synthesis. However, the P450c11β enzyme is expressed in preterm adrenal glands, we hypothesized an inhibition of cortisol production by adrenomedullin (ADM), a peptide highly produced in neonates and whose effect on steroidogenesis remains poorly known.

View Article and Find Full Text PDF

Adrenomedullin (ADM) is an evolutionarily conserved multifunctional peptide hormone that regulates implantation, embryo spacing, and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy.

View Article and Find Full Text PDF

The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions.

View Article and Find Full Text PDF

Haematopoietic stem cells (HSCs) reside in specialized microenvironments in the bone marrow-often referred to as 'niches'-that represent complex regulatory milieux influenced by multiple cellular constituents, including nerves. Although sympathetic nerves are known to regulate the HSC niche, the contribution of nociceptive neurons in the bone marrow remains unclear. Here we show that nociceptive nerves are required for enforced HSC mobilization and that they collaborate with sympathetic nerves to maintain HSCs in the bone marrow.

View Article and Find Full Text PDF
Article Synopsis
  • The laboratory mouse is the leading model in biomedical research due to its well-studied genome, but genetic quality control (QC) in mouse studies lacks standardization and cost-effective methods.* -
  • The MiniMUGA is a new genetic QC platform featuring over 11,000 probes that offers advantages like chromosomal sex determination, substrain discrimination, and easy-to-read reports on genetic data.* -
  • Testing MiniMUGA on nearly 7,000 samples showed it performs well, matching or exceeding earlier versions in accuracy, and it also provides new consensus genotypes for multiple inbred mouse strains.*
View Article and Find Full Text PDF

The G protein-coupled receptor 182 (GPR182) is an orphan GPCR, the expression of which is enriched in embryonic endothelial cells (ECs). However, the physiological role and molecular mechanism of action of GPR182 are unknown. Here, we show that GPR182 negatively regulates definitive hematopoiesis in zebrafish and mice.

View Article and Find Full Text PDF

Establishment of immune cell populations and adaptations in immune cells are critical aspects during pregnancy that lead to protection of the semi-allogenic fetus. Appropriate immune cell activation and trophoblast migration are regulated in part by chemokines, the availability of which can be fine-tuned by decoy receptors. Atypical chemokine receptor 3 (ACKR3), previously named C-X-C chemokine receptor 7 (CXCR7), is a chemokine decoy receptor expressed in placenta, but little is known about how this receptor affects placental development.

View Article and Find Full Text PDF

Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology.

View Article and Find Full Text PDF