Publications by authors named "Kathie J Whiteley"

The purpose of this study was to establish the time course and hemodynamic significance of de novo formed and enlarged uteroplacental arteries during pregnancy. Using x-ray microcomputed tomography (n = 4-7 placentas from 2-4 dams/gestational group), uteroplacental arterial vascular dimensions were measured at individual implantation sites. Dimensions and topology were used to compute total and vessel-specific resistances and cross-sectional areas.

View Article and Find Full Text PDF

The sites of elevated vascular resistance that impede placental perfusion in pathological pregnancies are unknown. In the current study, we identified these sites in a knockout mouse model (eNOS(-/-)) with reduced uterine (-55%) and umbilical (-29%) artery blood flows caused by endothelial nitric oxide synthase deficiency. Uteroplacental and fetoplacental arterial vascular trees of pregnant mice near term were imaged using x-ray microcomputed tomography (n = 5-10 placentas from 3-5 dams/group).

View Article and Find Full Text PDF

Given the angiogenic function of vascular endothelial growth factor A (VEGFA), the function of its expression by trophoblast in the avascular placental junctional zone is unknown. In mice, cells from the trophoblast-specific protein alpha (Tpbpa) lineage populate this zone and, in late gestation, some of these cells invade the decidual layer. To diminish Vegfa expression in Tpbpa cells, we crossed Vegfa(flox/flox) females with males carrying Tpbpa-Cre.

View Article and Find Full Text PDF

It is not known whether eNOS deficiency in the mother or the conceptus (ie, placenta and fetus) causes fetal growth restriction in mice lacking the endothelial NO synthase gene (eNOS knockout [KO]). We hypothesized that eNOS sustains fetal growth by maintaining low fetoplacental vascular tone and promoting fetoplacental vascularity and that this is a conceptus effect and is independent of maternal genotype. We found that eNOS deficiency blunted fetal growth, and blunted the normal increase in umbilical blood flow and umbilical venous diameter and the decrease in umbilical arterial Resistance Index in late gestation (14.

View Article and Find Full Text PDF

Preeclampsia is associated with impaired uteroplacental adaptations during pregnancy and abnormalities in the endothelial NO synthase (eNOS)-NO pathway, but whether eNOS deficiency plays a causal role is unknown. Thus, the objective of the current study was to determine the role of eNOS in the mother and/or conceptus in uteroplacental changes during pregnancy using eNOS knockout mice. We quantified uterine artery blood flow using microultrasound, visualized the uteroplacental vasculature using vascular corrosion casts, and used pimonidazole and hypoxia-inducible factor 1α immunohistochemistry as markers of hypoxia in the placentas of eNOS knockout mice versus the background strain, C57Bl/6J (wild type).

View Article and Find Full Text PDF

Preeclampsia is a life-threatening disorder characterized by maternal gestational hypertension and proteinuria that results from placental dysfunction. Placental abnormalities include abnormal syncytiotrophoblast and a 50% reduction in placental expression of the transcription factor Gcm1. In mice, homozygous deletion of Gcm1 prevents syncytiotrophoblast differentiation and is embryonic lethal.

View Article and Find Full Text PDF

How the fetoplacental arterial tree grows and expands during late gestational development is largely unknown. In this study, we quantified changes in arterial branching in the fetal exchange region of the mouse placenta during late gestation, when capillarization increases rapidly. We studied two commonly used mouse strains, CD1 and C57Bl/6 (B6), at embryonic days (E)13.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and the main toxicants found in cigarettes. Women are often exposed to PAHs before pregnancy, typically via prepregnancy smoking. To determine how prepregnancy exposure affects the fetoplacental vasculature of the placenta, we exposed female mice to PAHs before conception, perfused the fetoplacental arterial trees with X-ray contrast agent, and imaged the vasculature ex vivo by microcomputed tomography (micro-CT) at embryonic day 15.

View Article and Find Full Text PDF

Maternal cigarette smoking is considered an important risk factor associated with fetal intrauterine growth restriction (IUGR). Polycyclic aromatic hydrocarbons (PAHs) are well-known constituents of cigarette smoke, and the effects of acute exposure to these chemicals at different gestational stages have been well established in a variety of laboratory animals. In addition, many PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a cellular xenobiotic sensor responsible for activating the metabolic machinery.

View Article and Find Full Text PDF

Considerable progress has been made in adapting existing and developing new technologies to enable increasingly detailed phenotypic information to be obtained in embryonic and newborn mice. Sophisticated methods for imaging mouse embryos and newborns are available and include ultrasound and magnetic resonance imaging (MRI) for in vivo imaging, and MRI, vascular corrosion casts, micro-computed tomography, and optical projection tomography (OPT) for postmortem imaging. In addition, Doppler and M-mode ultrasound are useful noninvasive tools to monitor cardiac and vascular hemodynamics in vivo in embryos and newborns.

View Article and Find Full Text PDF

This chapter describes methods for making vascular corrosion casts of the uteroplacental and fetoplacental vasculature of the mouse placenta. A catheter placed in the ascending thoracic aorta of a pregnant mouse permits the introduction of a methyl methacrylate casting compound into the lower body vasculature, including the uterus and placenta. A fine-tipped glass cannula attached to a double-lumen catheter is used to instill the same casting compound in the fetoplacental vessels of mouse placentas.

View Article and Find Full Text PDF

Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by placental trophoblast cells rather than endothelial cells. Molecular genetic studies in mice aimed at identifying potential regulators of these processes have been hampered by lack of understanding of the anatomy of the vascular spaces in the placenta and the general nature of maternal-fetal vascular interactions.

View Article and Find Full Text PDF

Genetically altered mice may provide useful models for exploring cardiovascular regulation during pregnancy and postpartum if changes in mice mimic humans. We found in awake ICR (CD-1) mice at 17.5 days gestation that hematocrit was reduced 18%, and the pressor response to intravenous angiotensin II was reduced ~33%.

View Article and Find Full Text PDF