Sodium butyrate (NaBu), well-known as a histone deacetylase inhibitor and for its capacity to impede cell growth, can enhance the production of a specific protein, such as an antibody, in recombinant Chinese hamster ovary (CHO) cell cultures. In this study, two CHO cell lines, namely K1 and DG44, along with their corresponding mAb-producing lines, K1-Pr and DG44-Pr, were cultivated with or without NaBu. A SWATH-based profiling method was employed to analyze the proteome.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) nanotags functionalized with lectins as the biological recognition element can be used to target the carbohydrate portion of carbohydrate-carrying molecules (glycoconjugates). An investigation of the optical stability of such functionalized SERS nanotags is an essential initial step before future application and quantification of surface glycan biomarkers on cells and extracellular vesicles. Herein, we report an innovative approach to evaluate the SERS stability of lectin-conjugated nanotags by investigating any possible interfering lectin-lectin interactions in a mixture of different lectin-conjugated SERS nanotags, as well as an assessment of lectin-glycan interaction by mixing wheat germ agglutinin (WGA)-conjugated SERS nanotags with different glycoproteins.
View Article and Find Full Text PDFGlycosylation is important in biology, contributing to both protein conformation and function. Structurally, glycosylation is complex and diverse. This complexity is reflected in the topology, composition, monosaccharide linkages, and isomerism of each oligosaccharide.
View Article and Find Full Text PDFAfrican sleeping sickness is caused by Trypanosoma brucei, a parasite transmitted by the bite of a tsetse fly. Trypanosome infection induces a severe transcriptional downregulation of tsetse genes encoding for salivary proteins, which reduces its anti-hemostatic and anti-clotting properties. To better understand trypanosome transmission and the possible role of glycans in insect bloodfeeding, we characterized the N-glycome of tsetse saliva glycoproteins.
View Article and Find Full Text PDFHuman adipose tissue contains a major source of adipose-derived stem cells (ADSCs) that have the ability to differentiate into various cell types: , ADSCs can differentiate into mesenchymal lineages including adipocytes, while , ADSCs become mature adipocytes. Protein glycosylation has been shown to change in stem cell differentiation, and while ADSCs have been acknowledged for their therapeutic potential, little is known about protein glycosylation during human ADSC adipogenic differentiation. In the present study, the global membrane protein glycosylation of native adipocytes was compared to ADSCs from the same individuals as a model of adipogenesis.
View Article and Find Full Text PDFDuring Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked.
View Article and Find Full Text PDFWhile aberrant protein glycosylation is a recognized characteristic of human cancers, advances in glycoanalytics continue to discover new associations between glycoproteins and tumorigenesis. This glycomics-centric study investigates a possible link between protein paucimannosylation, an under-studied class of human N-glycosylation [Man GlcNAc Fuc ], and cancer. The paucimannosidic glycans (PMGs) of 34 cancer cell lines and 133 tissue samples spanning 11 cancer types and matching non-cancerous specimens are profiled from 467 published and unpublished PGC-LC-MS/MS N-glycome datasets collected over a decade.
View Article and Find Full Text PDFGlycan head-groups attached to glycosphingolipids (GSLs) found in the cell membrane bilayer can alter in response to external stimuli and disease, making them potential markers and/or targets for cellular disease states. To identify such markers, comprehensive analyses of glycan structures must be undertaken. Conventional analyses of fluorescently labeled glycans using hydrophilic interaction high-performance liquid chromatography (HILIC) coupled with mass spectrometry (MS) provides relative quantitation and has the ability to perform automated glycan assignments using glucose unit (GU) and mass matching.
View Article and Find Full Text PDFSummary: Many eukaryotic proteins are modified by N-glycans. Liquid chromatography (ultra-performance -UPLC and high-performance-HPLC) coupled with mass spectrometry (MS) is conventionally used to characterize N-glycan structures. Software can automatically assign glycan structures by matching their observed retention times and masses with standardized values in reference databases.
View Article and Find Full Text PDFAs one of several biologically active compounds in milk, glycoproteins have been indicated to be involved in the protection of newborns from bacterial infection. As much of the physical and immune development of the tammar wallaby (Macropus eugenii) young occurs during the early phases of lactation and not in utero, the tammar is a model species for the characterization of potential developmental support agents provided by maternal milk.In the present study, the N- and O-linked glycans from tammar wallaby milk glycoproteins from six individuals at different lactation time points were subjected to glycomics analyses using porous graphitized carbon liquid chromatography electrospray ionization mass spectrometry.
View Article and Find Full Text PDF