Publications by authors named "Katherine Widdowson"

Gepotidacin is a first-in-class triazaacenaphthylene antibacterial agent that selectively inhibits bacterial DNA gyrase and topoisomerase IV through a unique binding mode and has the potential to treat a number of bacterial diseases. Development of this new agent to treat pneumonic plague caused by depends on the U.S.

View Article and Find Full Text PDF

Emerging resistance to current antimalarial medicines underscores the importance of identifying new drug targets and novel compounds. Malaria parasites are purine auxotrophic and import purines via the equilibrative nucleoside transporter type 1 (PfENT1). We previously showed that PfENT1 inhibitors block parasite proliferation in culture.

View Article and Find Full Text PDF

The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal.

View Article and Find Full Text PDF

Tyrosine ureas had been identified as potent muscarinic receptor antagonists with promising in vivo activity. Controlling the stereochemistry of the chiral quaternary ammonium center had proved to be a serious issue for this series, however. Herein we describe the preparation and SAR of tyrosine urea antagonists containing achiral quaternary ammonium centers.

View Article and Find Full Text PDF

A novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.

View Article and Find Full Text PDF

A series of azepanone inhibitors of cathepsin S is described. Selectivity over both cathepsin K and cathepsin L was achieved by varying the P2 substituent. Ultimately, a balanced potency and selectivity profile was achieved in compound 39 possessing a 1-methylcyclohexyl alanine at P2 and nicotinamide as the P' substituent.

View Article and Find Full Text PDF

Novel tropane derivatives were characterized as muscarinic acetylcholine receptor antagonists (mAChRs). Through optimization of the structure-activity relationship around the tropane scaffold, the quaternary ammonium salt 34 was identified as a very potent M(3) mAChR antagonist. The compound was functionally active and displayed greater than 24 h duration of action in a mouse model of bronchoconstriction.

View Article and Find Full Text PDF

Design and syntheses of a novel series of muscarinic antagonists are reported. These efforts have culminated in the discovery of (3-endo)-3-(2-cyano-2,2-diphenylethyl)-8,8-dimethyl-8-azoniabicyclo[3.2.

View Article and Find Full Text PDF

A novel 4-hydroxyl(diphenyl)methyl substituted quinuclidine series was discovered as a very promising class of muscarinic antagonists. The structure-activity relationships of the connectivity of the diphenyl moiety to the quinuclidine core and around the ring nitrogen side chain are described. Computational docking studies using an homology model of the M(3) receptor readily explained the observed structure-activity relationship of the various compounds.

View Article and Find Full Text PDF

A series of N-arylpiperazine camphor sulfonamides was discovered as novel CXCR3 antagonists. The synthesis, structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent and selective CXCR3 antagonists are described.

View Article and Find Full Text PDF

In the course of our research program to develop novel muscarinic receptor antagonists for the treatment of COPD, new tropane carbamate derivatives were identified as potent anti-muscarinic agents. The synthesis, structure-activity relationships and pharmacological evaluation that led to the identification of compound 5o, are described.

View Article and Find Full Text PDF

A series of 3-arylamino-2H-1,2,4-benzothiadiazin-5-ol 1,1-dioxides were prepared and shown to be novel and selective antagonists of the CXCR2 receptor. Synthesis, structure and activity relationships, selectivity, and some developability properties are described.

View Article and Find Full Text PDF

N,N'-diarylsquaramides were prepared and evaluated as antagonists of CXCR2. The compounds were found to be potent and selective antagonists of CXCR2. Significant differences in SAR was observed relative to the previously described N,N'-diarylurea series.

View Article and Find Full Text PDF

A series of N-(2-hydroxy-3-sulfonamidobenzene)-N'-arylcyanoguanidines was prepared. In general, these compounds proved to be potent antagonists of CXCR2 while the selectivity versus CXCR1 ranged from non-selective to >200-fold.

View Article and Find Full Text PDF

High throughput screening of the corporate compound collection led to the discovery of a novel series of substituted aminoalkoxybenzyl pyrrolidines as human urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that led to the identification of a truncated sub-series, represented by SB-436811 (1a), are described.

View Article and Find Full Text PDF

1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.

View Article and Find Full Text PDF

A series of 3-substituted N,N'-diarylureas was prepared and the structure-activity relationship relative to CXCR2 receptor affinity as well as their pharmacokinetic properties were examined. In vitro microsomal metabolism studies indicated that the lower clearance rates of the 3-sulfonamido-substituted compounds were most likely due to the suppression of glucuronidation.

View Article and Find Full Text PDF

N,N'-Diarylureas were prepared, and the structure-activity relationship relative to the CXCR2 receptor was examined. This led to the identification of a potent and highly selective CXCR2 antagonist, which in addition was shown to be functionally active both in vitro against human neutrophils and in vivo in rabbit models of ear edema and neutropenia.

View Article and Find Full Text PDF

Much evidence implicates IL-8 as a major mediator of inflammation and joint destruction in rheumatoid arthritis. The effects of IL-8 and its related ligands are mediated via two receptors, CXCR1 and CXCR2. In the present study, we demonstrate that a potent and selective nonpeptide antagonist of human CXCR2 potently inhibits (125)I-labeled human IL-8 binding to, and human IL-8-induced calcium mobilization mediated by, rabbit CXCR2 (IC(50) = 40.

View Article and Find Full Text PDF