Publications by authors named "Katherine Whittaker"

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease caused by a combination of genetic and environmental risk factors. The serum metabolome refers to a set of small-molecules which are an important determinant of cellular health. We obtained genome-wide association study (GWAS) summary statistics for serum concentrations of 376 metabolites which were population matched with 2 GWAS studies of AD.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions.

View Article and Find Full Text PDF

Repetitive exposure of macrophages to microbial antigen is known to tolerize them to further stimulation and to inhibit proinflammatory cytokine release. Using transgenic (Tg) mice that incorporate the entire HIV-1 genome we have previously shown that toll like receptor (TLR)-2, -4, and -9 ligands induced tolerance as assessed by decreased proinflammatory cytokine secretion and nuclear factor-kappa beta activation. Yet, despite cytokine modulation, HIV-1 p24 production was enhanced in tolerized cells in vitro and in vivo.

View Article and Find Full Text PDF

Cocaine is associated with an increased risk for, and progression of, clinical disease associated with human immunodeficiency virus (HIV) infection. A human xenograft model, in which human peripheral blood mononuclear cells were implanted into severe combined immunodeficiency mice (huPBL-SCID) and infected with a HIV reporter virus, was used to investigate the biological interactions between cocaine and HIV infection. Systemic administration of cocaine (5 mg/kg/d) significantly increased the percentage of HIV-infected PBL (two- to threefold) and viral load (100- to 300-fold) in huPBL-SCID mice.

View Article and Find Full Text PDF

Epidemiologic studies identify marijuana as a potential cofactor in the development and progression of HIV infection. To evaluate this interaction we employed a hybrid model in which human peripheral blood leukocytes (PBL) were implanted into severe combined immunodeficient mice (huPBL-SCID) and infected with an HIV reporter construct in the presence or absence of tetrahydrocannabinol (THC) exposure. Administration of THC alone, in the absence of HIV, decreased CD4 counts and the CD4:CD8 ratio.

View Article and Find Full Text PDF

Lung macrophages provide a first line of host defense against inhaled pathogens and their function is impaired in the lungs of inhaled substance abusers. In order to investigate the mechanism for this impairment, alveolar macrophages (AM) were recovered from nonsmokers (NS), regular tobacco smokers (TS), marijuana smokers (MS), or crack cocaine smokers (CS), and evaluated for their production of nitric oxide (NO) and the role of NO as an antimicrobial effector molecule. AM from NS and TS efficiently killed Staphylococcus aureus and their antibacterial activity correlated closely with the production of nitrite and the expression of mRNA encoding for inducible nitric oxide synthase (iNOS).

View Article and Find Full Text PDF

Human alveolar macrophages (AMs) were recovered from the lungs of healthy nonsmokers (NS) or smokers of tobacco (TS), marijuana (MS), or crack cocaine (CS) and challenged in vitro with Staphylococcus aureus. AMs from NS and TS exhibited potent antibacterial activity that correlated with the production of nitric oxide (NO) and induction of NO synthase without the requirement for priming with exogenous cytokines. In contrast, AMs from MS and CS exhibited minimal antibacterial activity and failed to produce NO unless primed with additional cytokines.

View Article and Find Full Text PDF