Publications by authors named "Katherine Weissler"

T cells expressing anti-CD19 chimeric antigen receptors (CARs) have activity against chronic lymphocytic leukemia (CLL), but complete response rates range from 18% to 29%, so improvement is needed. Peripheral blood mononuclear cells (PBMCs) of CLL patients often contain high levels of CLL cells that can interfere with CAR T cell production, and T cells from CLL patients are prone to exhaustion and other functional defects. We previously developed an anti-CD19 CAR designated Hu19-CD828Z.

View Article and Find Full Text PDF

Allergic diseases are common, affecting more than 20% of the population. Genetic variants in the TGFβ pathway are strongly associated with atopy. To interrogate the mechanisms underlying this association, we examined patients and mice with Loeys-Dietz syndrome (LDS) who harbor missense mutations in the kinase domain of .

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a challenging cancer of plasma cells, and researchers developed a new treatment using a human anti-BCMA CAR called FHVH33-CD8BBZ to target it.
  • In a clinical trial involving 25 patients with relapsed MM, the treatment resulted in a 52% stringent complete response rate and a median progression-free survival of 78 weeks.
  • While some patients experienced cytokine-release syndrome, it was manageable and most anti-MM effects were observed within 2-4 weeks post-infusion, indicating the treatment's rapid and effective action against the disease.
View Article and Find Full Text PDF

Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease.

View Article and Find Full Text PDF

Purpose Of Review: The prevalence of food allergy is rising globally. This review will discuss recent discoveries regarding the immunologic mechanisms that drive the initial sensitization and allergic response to food antigens, which may inform prevention and treatment strategies.

Recent Findings: Tolerance to food antigens is antigen-specific and promoted by oral exposure early in life and maternal transfer of immune complexes via breast milk.

View Article and Find Full Text PDF

New evidence in humans and mice supports a role for transforming growth factor-β (TGF-β) in the initiation and effector phases of allergic disease, as well as in consequent tissue dysfunction. This pleiotropic cytokine can affect T cell activation and differentiation and B cell immunoglobulin class switching following initial encounter with an allergen. TGF-β can also act on mast cells during an acute allergic episode to modulate the strength of the response, in addition to driving tissue remodeling following damage caused by an allergic attack.

View Article and Find Full Text PDF

The aortic root is the predominant site for development of aneurysm caused by heterozygous loss-of-function mutations in positive effectors of the transforming growth factor-β (TGF-β) pathway. Using a mouse model of Loeys-Dietz syndrome (LDS) that carries a heterozygous kinase-inactivating mutation in TGF-β receptor I, we found that the effects of this mutation depend on the lineage of origin of vascular smooth muscle cells (VSMCs). Secondary heart field-derived (SHF-derived), but not neighboring cardiac neural crest-derived (CNC-derived), VSMCs showed impaired Smad2/3 activation in response to TGF-β, increased expression of angiotensin II (AngII) type 1 receptor (Agtr1a), enhanced responsiveness to AngII, and higher expression of TGF-β ligands.

View Article and Find Full Text PDF

Background: Peanut allergy (PA) is potentially life-threatening and generally persists for life. Recent data suggest the skin might be an important route of initial sensitization to peanut, whereas early oral exposure to peanut is protective. In mice regulatory T (Treg) cells are central to the development of food tolerance, but their contribution to the pathogenesis of food allergy in human subjects is less clear.

View Article and Find Full Text PDF

How the formation and activity of CD4(+)Foxp3(+) regulatory T cells (Tregs) are shaped by TCR recognition of the diverse array of peptide:MHC complexes that can be generated from self-antigens and/or foreign Ags in vivo remains poorly understood. We show that a self-peptide with low (but not high) stimulatory potency promotes thymic Treg formation and can induce conventional CD4(+) T cells in the periphery to become Tregs that express different levels of the transcription factor Helios according to anatomical location. When Tregs generated in response to this self-peptide subsequently encountered the same peptide derived instead from influenza virus in the lung-draining lymph nodes of infected mice, they proliferated, acquired a T-bet(+)CXCR3(+) phenotype, and suppressed the antiviral effector T cell response in the lungs.

View Article and Find Full Text PDF

Foxp3(+) regulatory T (Treg) cells are required to prevent the immune system from spontaneously mounting a severe autoaggressive lymphoproliferative disease and can modulate immune responses in a variety of settings, including infections. In this review, we describe studies that use transgenic mice to determine how signals through the T-cell receptor (TCR) contribute to the development, differentiation, and activity of Treg cells in in vivo settings. By varying the amount and quality of the self-peptide recognized by an autoreactive TCR, we have shown that the interplay between autoreactive thymocyte deletion and Treg cell formation leads to a Treg cell repertoire that is biased toward low abundance agonist self-peptides.

View Article and Find Full Text PDF

Autoreactive CD4(+) CD8(-) (CD4SP) thymocytes can be subjected to deletion when they encounter self-peptide during their development, but they can also undergo selection to become CD4SPFoxp3(+) Treg cells. We have analyzed the relationship between these distinct developmental fates using mice in which signals transmitted by the TCR have been attenuated by mutation of a critical tyrosine residue of the adapter protein SLP-76. In mice containing polyclonal TCR repertoires, the mutation caused increased frequencies of CD4SPFoxp3(+) thymocytes.

View Article and Find Full Text PDF

We examined the formation, participation, and functional specialization of virus-reactive Foxp3(+) regulatory T cells (Tregs) in a mouse model of influenza virus infection. "Natural" Tregs generated intrathymically, based on interactions with a self-peptide, proliferated in response to a homologous viral Ag in the lungs and, to a lesser extent, in the lung-draining mediastinal lymph nodes (medLNs) of virus-infected mice. In contrast, conventional CD4(+) T cells with identical TCR specificity underwent little or no conversion to become "adaptive" Tregs.

View Article and Find Full Text PDF