Critical minerals (or critical elements) are minerals or elements that are essential to global security and development and have supply chains vulnerable to disruption. In general, knowledge of the environmental behavior and health effects of critical elements is needed to support the development of safe and environmentally responsible supplies. This knowledge includes identifying potential consequences of increased critical element production and use, alternative critical element sources such as mine wastes, and adverse effects of critical elements on ecosystem condition and organismal health.
View Article and Find Full Text PDFContamination from acid mine drainage affects ecosystems and usability of groundwater for domestic and municipal purposes. The Captain Jack Superfund Site outside of Ward, Boulder County, Colorado, USA, hosts a draining mine adit that was remediated through emplacement of a hydraulic bulkhead to preclude acid mine drainage from entering nearby Lefthand Creek. During impoundment of water within the mine workings in 2020, a diverse and novel dataset of stable isotopes of water, sulfate, and carbon (, , , , ), rare earth elements, and environmental tracers (noble gases and tritium) were collected to understand groundwater recharge and mixing, mechanisms of sulfide oxidation and water-rock interaction, and the influence of remediation on the hydrologic and geochemical system.
View Article and Find Full Text PDFTwo synoptic sampling campaigns were conducted to quantify metal loading to Illinois Gulch, a small stream affected by historical mining activities. The first campaign was designed to determine the degree to which Illinois Gulch loses water to the underlying mine workings and to determine the effect of these losses on observed metal loads. The second campaign was designed to evaluate metal loading within Iron Springs, a subwatershed that was responsible for the majority of the metal loading observed during the first campaign.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2020
Nontuberculous mycobacteria (NTM) are environmental bacteria that may cause chronic lung disease. Environmental factors that favor NTM growth likely increase the risk of NTM exposure within specific environments. We aimed to identify water-quality constituents (Al, As, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Na, Zn, and pH) associated with NTM disease across Colorado watersheds.
View Article and Find Full Text PDFCombining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach.
View Article and Find Full Text PDFLow-flow synoptic sampling campaigns are often used as the primary tool to characterize watersheds affected by mining. Although such campaigns are an invaluable part of site characterization, investigations which focus solely on low-flow conditions may yield misleading results. The objective of this paper is to demonstrate this point and elucidate the mechanisms responsible for the release of metals during rainfall runoff.
View Article and Find Full Text PDFIndium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium.
View Article and Find Full Text PDFA post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment.
View Article and Find Full Text PDF