Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor β1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung.
View Article and Find Full Text PDFSomatic and germline mutations in the dual zinc-finger transcription factor GATA3 are associated with breast cancers expressing the estrogen receptor (ER) and the autosomal dominant hypoparathyroidism-deafness-renal dysplasia syndrome, respectively. To elucidate the role of GATA3 in breast tumorigenesis, we investigated 40 breast cancers that expressed ER, for GATA3 mutations. Six different heterozygous GATA3 somatic mutations were identified in eight tumors, and these consisted of: a frameshifting deletion/insertion (944_945delGGinsAGC), an in-frame deletion of a key arginine residue (991_993delAGG), a seven-nucleotide frameshifting insertion (991_992insTGGAGGA), a frameshifting deletion (1196_1197delGA), and two frameshifting single nucleotide insertions (1224_1225insG found in three tumors and 1224_1225insA).
View Article and Find Full Text PDFContext: The hypoparathyroidism, deafness, renal dysplasia (HDR) syndrome is caused by mutations in the gene encoding GATA3, which belongs to a family of dual zinc-finger transcription factors that have a role in vertebrate embryonic development.
Objective: The aim of the study was to identify the GATA3 mutation in a HDR patient and determine its functional consequences. PATIENT AND DESIGN: A patient with HDR was studied after approval from the local ethical committee.