Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution.
View Article and Find Full Text PDFThe efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios.
View Article and Find Full Text PDFKymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift.
View Article and Find Full Text PDFP-glycoprotein (Pgp) plays a pivotal role in drug bioavailability and multi-drug resistance development. Understanding the protein's activity and designing effective drugs require insight into the mechanisms underlying Pgp-mediated transport of xenobiotics. In this study, we investigated the drug-induced conformational changes in Pgp and adopted a conformationally-gated model to elucidate the Pgp-mediated transport of camptothecin analogs (CPTs).
View Article and Find Full Text PDFMembrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding.
View Article and Find Full Text PDFcauses severe invasive candidiasis. infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear.
View Article and Find Full Text PDFThe worldwide coronavirus disease 2019 pandemic has had devastating effects on health, healthcare infrastructure, social structure, and economics. One of the limiting factors in containing the spread of this virus has been the lack of widespread availability of fast, inexpensive, and reliable methods for testing of individuals. Frequent screening for infected and often asymptomatic people is a cornerstone of pandemic management plans.
View Article and Find Full Text PDFIntrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores.
View Article and Find Full Text PDFAtomic force microscopy has emerged as a valuable complementary technique in membrane structural biology. The apparatus is capable of probing individual membrane proteins in fluid lipid bilayers at room temperature with spatial resolution at the molecular length scale. Protein conformational dynamics are accessible over a range of biologically relevant timescales.
View Article and Find Full Text PDFInterstitial cells of Cajal (ICC) provide a pacemaker signal for coordinated motility patterns in the mammalian gastrointestinal (GI) tract. Kit signaling is required for development and maintenance of ICC, and these cells can be identified by Kit-like immunoreactivity. The zebrafish GI tract has two distinct ICC networks similar to mammals, suggesting a similar role in the generation of GI motility; however, a functional role for Kit-positive cells in zebrafish has not been determined.
View Article and Find Full Text PDFIntracellular trafficking represents a key mechanism that regulates cell fate by participating in either prodeath or prosurvival signaling. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is a well known component of vesicle trafficking machinery that mediates intermembrane fusion. αSNAP increases cell resistance to cytotoxic stimuli, although mechanisms of its prosurvival function are poorly understood.
View Article and Find Full Text PDFActivating synthetic ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as pioglitazone, are commonly used to treat persons with diabetes mellitus with improvement of insulin resistance. Several reports have clearly demonstrated that PPARgamma ligands could inhibit colorectal cancer cell growth and induce apoptosis. Meanwhile, aberrant crypt foci (ACF) have come to be established as a biomarker of the risk of CRC in azoxymethane-treated mice and rats.
View Article and Find Full Text PDFPurpose: Acute gastrointestinal syndrome (AGS) resulting from ionizing radiation causes death within 7 days. Currently, no satisfactory agent exists for mitigation of AGS. A peptide derived from the receptor binding domain of fibroblast growth factor 2 (FGF-P) was synthesized and its mitigation effect on AGS was examined.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2009
Current microtubule-targeting agents interfere with the regulated assembly of microtubules from alpha/beta tubulin heterodimers but do not markedly alter tubulin levels. Previously, we showed that the compound T0070907 interferes with microtubule function by reversibly decreasing alpha and beta tubulin protein levels by more than 50% in multiple CRC cell lines. Since tubulin levels are generally relatively stable, and cells lack regulatory networks to respond to decreased tubulin levels by increasing synthesis, our result suggested the possibility of cancer therapies that act directly on tubulin homeostasis.
View Article and Find Full Text PDFThe microtubule-targeting agents (MTAs) are a very successful class of cancer drugs with therapeutic benefits in both hematopoietic and solid tumors. However, resistance to these drugs is a significant problem. Current MTAs bind to microtubules, and/or to their constituent tubulin heterodimers, and affect microtubule polymerization and dynamics.
View Article and Find Full Text PDFThe microtubule-targeting agents are one of the most successful classes of cancer therapeutics. All known antimicrotubule drugs bind to microtubules, or to their constituent tubulin heterodimers, and affect microtubule polymerization and dynamics. Recently, PPAR-gamma inhibitors were shown to reduce tubulin levels without affecting the polymerization of tubulin in vitro.
View Article and Find Full Text PDFThe nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) has been identified as an important therapeutic target in murine models of colorectal cancer (CRC). To examine whether PPARgamma inhibition has therapeutic effects in late-stage CRC, the effects of PPARgamma inhibitors on CRC cell survival were examined in CRC cell lines and a murine CRC model. Low doses (0.
View Article and Find Full Text PDFEsophageal cancer is difficult to treat because of its rapid progression, and more effective therapeutic approaches are needed. The PPARgamma is a nuclear receptor superfamily member that is expressed in many cancers. PPARgamma expression is a feature of esophageal cancer cell lines, and in the present investigation, the PPARgamma antagonists T0070907 and GW9662 could induce loss of invasion but could not induce growth reduction or apoptosis at low concentrations (< 10 mM).
View Article and Find Full Text PDFActivation of the nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits growth and survival of hepatocellular carcinoma (HCC) cell lines. To further investigate the function of PPARgamma in HCC, PPARgamma expression patterns in primary tumors were examined, and the responses of two HCC cell lines to PPARgamma activation and inhibition were compared. PPARgamma expression was increased in HCC and benign-appearing peritumoral hepatocytes compared with remote benign hepatocytes.
View Article and Find Full Text PDFCrohn's disease is associated with an excessive T helper (TH) type 1 inflammatory immune response. Reducing the influx of disease-associated CD4+ TH1 cells into the inflamed intestine is likely to be beneficial in preventing a disease flare-up and even possibly in reducing the effect of acute disease. Thiazolidenedione (TZD) ligands, which activate peroxisome proliferator-activated receptor-gamma (PPARgamma), have been shown to reduce TH1 inflammation in murine models of colitis, primarily in a preventative fashion.
View Article and Find Full Text PDFThe outflow tract (OFT) is abnormal in many congenital heart defects. One critical mechanism for morphogenesis of this complex structure is apoptosis. Chicken embryos (stages 19-38; ED4-10) stained with a fluorescent supravital lysosomal dye (LysoTracker Red; LTR) revealed the three-dimensional relationship between structural changes and apoptosis.
View Article and Find Full Text PDFThe maturation of T cells is an intricate process involving the interaction of developing thymocytes with discrete microenvironments within the thymus. Numerous studies have indicated that distinct thymic compartments provide signals required for each stage of thymocyte maturation. In this study we performed a comprehensive analysis of the expression patterns of Eph-A receptors and ephrins-A in the thymus using in situ hybridization and reverse transcription-polymerase chain reaction, and show that expression of these molecules is highly compartmentalized.
View Article and Find Full Text PDF