Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host's microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance.
View Article and Find Full Text PDFMicrobial communities vary across space, time, and individual hosts, presenting new challenges for the development of statistics measuring the variability of community composition. To understand differences across microbiome samples from different host individuals, sampling times, spatial locations, or experimental replicates, we present FAVA, a new normalized measure for characterizing compositional variability across multiple microbiome samples. FAVA quantifies variability across many samples of taxonomic or functional relative abundances in a single index ranging between 0 and 1, equaling 0 when all samples are identical and equaling 1 when each sample is entirely comprised of a single taxon.
View Article and Find Full Text PDFThe long-term success of introduced populations depends on their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization. Here, we investigate how initial population (propagule) size and resource competition interact during community coalescence by systematically mixing eight pairs of microbial communities at ratios that vary over six orders of magnitude, and we compare our results to a neutral ecological model. Although the composition of the resulting co-cultures deviated substantially from neutral expectations, each co-culture contained species whose relative abundance depended on propagule size even after ~40 generations of growth.
View Article and Find Full Text PDFBackground: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development.
Results: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community.
Influenza viruses rapidly diversify within individual human infections. Several recent studies have deep-sequenced clinical influenza infections to identify viral variation within hosts, but it remains unclear how within-host mutations fare at the between-host scale. Here, we compare the genetic variation of H3N2 influenza within and between hosts to link viral evolutionary dynamics across scales.
View Article and Find Full Text PDFInfluenza viruses use distinct antibody escape mechanisms depending on the overall complexity of the antibody response that is encountered. When grown in the presence of a hemagglutinin (HA) monoclonal antibody, influenza viruses typically acquire a single HA mutation that reduces the binding of that specific monoclonal antibody. In contrast, when confronted with mixtures of HA monoclonal antibodies or polyclonal sera that have antibodies that bind several HA epitopes, influenza viruses acquire mutations that increase HA binding to host cells.
View Article and Find Full Text PDFThe rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections.
View Article and Find Full Text PDFThe high mutation rates of RNA viruses lead to rapid genetic diversification, which can enable cooperative interactions between variants in a viral population. We previously described two distinct variants of H3N2 influenza virus that cooperate in cell culture. These variants differ by a single mutation, D151G, in the neuraminidase protein.
View Article and Find Full Text PDFViral variants that arise in the global influenza population begin as mutations in single infected hosts, but the evolutionary dynamics that transform within-host variation to global genetic diversity are poorly understood. Here, we demonstrate that influenza evolution within infected humans recapitulates many evolutionary dynamics observed at the global scale. We deep-sequence longitudinal samples from four immunocompromised patients with long-term H3N2 influenza infections.
View Article and Find Full Text PDFRNA viruses rapidly diversify into quasispecies of related genotypes. This genetic diversity has long been known to facilitate adaptation, but recent studies have suggested that cooperation between variants might also increase population fitness. Here, we demonstrate strong cooperation between two H3N2 influenza variants that differ by a single mutation at residue 151 in neuraminidase, which normally mediates viral exit from host cells.
View Article and Find Full Text PDFBackground: A common assumption of microorganisms is that laboratory stocks will remain genetically and phenotypically constant over time, and across laboratories. It is becoming increasingly clear, however, that mutations can ruin strain integrity and drive the divergence or "domestication" of stocks. Since its discovery in 1960, a stock of Methylobacterium extorquens AM1 ("AM1") has remained in the lab, propagated across numerous growth and storage conditions, researchers, and facilities.
View Article and Find Full Text PDFGenome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos.
View Article and Find Full Text PDF