Bistability enables adaptive designs with tunable deflections for applications including morphing wings, robotic grippers, and consumer products. Composite laminates may be designed to exhibit bistability due to pre-strains that develop during the processing of the polymer matrix, enabling fast reconfiguration between two stable shapes. Unfortunately, designing bistable laminates is challenging because of their highly nonlinear behavior.
View Article and Find Full Text PDFPlants are inspiring models for adaptive, morphing systems. In addition to their shape complexity, they can respond to multiple stimuli and exhibit both fast and slow motion. We attempt to recreate these capabilities in synthetic structures, proposing a fabrication and design scheme for multi-stimuli and multi-temporal responsive plant-inspired composites.
View Article and Find Full Text PDFThe properties of conventional materials result from the arrangement of and the interaction between atoms at the nanoscale. Metamaterials have shifted this paradigm by offering property control through structural design at the mesoscale, thus broadening the design space beyond the limits of traditional materials. A family of mechanical metamaterials consisting of soft sheets featuring a patterned array of reconfigurable bistable domes is reported here.
View Article and Find Full Text PDF