Publications by authors named "Katherine Rott"

Recent advances in fate mapping and single-cell technologies have revealed how the dynamics and function of tissue-resident macrophages are shaped by their environment. However, macrophages in sensory organs such as the cochlea where the central nervous system and peripheral nervous system meet remain understudied. Combining single-cell transcriptomics, fate mapping, and parabiosis experiments, we show that five types of myeloid cells including three tissue-resident macrophage subpopulations, coexist in the mouse cochlea.

View Article and Find Full Text PDF

CMV, a ubiquitous herpesvirus, elicits an extraordinarily large T cell response that is sustained or increases over time, a phenomenon termed 'memory inflation.' Remarkably, even latent, non-productive infection can drive memory inflation. Despite intense research on this phenomenon, the infected cell type(s) involved are unknown.

View Article and Find Full Text PDF

Therapeutic antibodies blocking PD-1-/PD-L1 interaction have achieved remarkable clinical success in cancer. In addition to blocking a target molecule, some isotypes of antibodies can activate complement, NK cells or phagocytes, resulting in death of the cell expressing the antibody's target. Human anti-PD-1 therapeutics use antibody isotypes designed to minimize such antibody-dependent lysis.

View Article and Find Full Text PDF

Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer.

View Article and Find Full Text PDF

Nestling house sparrows near fledging age (12 days) were previously found to reversibly modulate the activity of their intestinal digestive enzymes in response to changes in diet composition. However, it is not known how quickly nestlings can adjust to new diets with different substrate compositions, nor is it known how early in life nestlings can modulate their enzyme activity in response to changes in diet. In the present study, 3-day-old nestlings were captured from the wild and fed and switched among contrasting diets - one high in protein and low in carbohydrate and another higher in carbohydrate and with lower, but adequate, protein - in order to determine (1) how quickly house sparrow nestlings could adjust to changes in diet composition, (2) how early in life nestlings could modulate their digestive enzyme activity in response to these changes and (3) which digestive enzymes could be modulated in house sparrow nestlings earlier in life.

View Article and Find Full Text PDF

Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris).

View Article and Find Full Text PDF

Flying vertebrates have been hypothesized to rely heavily on paracellular absorption of nutrients to compensate for having smaller intestines than non-flyers. We tested this hypothesis in an insectivorous bat (Myotis lucifugus) and two insect-eating rodents (Onychomys leucogaster and Peromyscus leucopus). In intact animals, the fractional absorption of orally dosed l-arabinose (Mr 150) was 82% in M.

View Article and Find Full Text PDF