Publications by authors named "Katherine Pinnick"

Upper-body adiposity is adversely associated with metabolic health whereas the opposite is observed for the lower-body. The neck is a unique upper-body fat depot in adult humans, housing thermogenic brown adipose tissue (BAT), which is increasingly recognised to influence whole-body metabolic health. Loss of BAT, concurrent with replacement by white adipose tissue (WAT), may contribute to metabolic disease, and specific accumulation of neck fat is seen in certain conditions accompanied by adverse metabolic consequences.

View Article and Find Full Text PDF

While there is no standardized protocol for the differentiation of human adipocytes in culture, common themes exist in the use of supra-physiological glucose and hormone concentrations, and an absence of exogenous fatty acids. These factors can have detrimental effects on some aspects of adipogenesis and adipocyte function. Here, we present methods for modifying the adipogenic differentiation protocol to overcome impaired glucose uptake and insulin signalling in human adipose-derived stem cell lines derived from the stromal vascular fraction of abdominal and gluteal subcutaneous adipose tissue.

View Article and Find Full Text PDF

Mechanisms governing regional human adipose tissue (AT) development remain undefined. Here, we show that the long non-coding RNA HOTAIR (HOX transcript antisense RNA) is exclusively expressed in gluteofemoral AT, where it is essential for adipocyte development. We find that HOTAIR interacts with polycomb repressive complex 2 (PRC2) and we identify core HOTAIR-PRC2 target genes involved in adipocyte lineage determination.

View Article and Find Full Text PDF
Article Synopsis
  • Elevating blood ketones can improve exercise performance and training adaptations, but the method of inducing hyperketonemia (diet vs. supplementation) matters.
  • In a study with trained endurance athletes, ketosis was achieved through either a ketone drink with a carbohydrate-rich diet or a strict ketogenic diet, with different impacts on exercise capacity measured over several days.
  • Results showed that ketone supplementation enhanced exercise capacity (up 6-8%) compared to a control diet, while the ketogenic diet significantly decreased performance (down 48-57%), highlighting the differing effects of dietary approaches on endurance training.
View Article and Find Full Text PDF

Objective: Metformin is a first-line pharmacotherapy in the treatment of type 2 diabetes, a condition closely associated with non-alcoholic fatty liver disease (NAFLD). Although metformin promotes weight loss and improves insulin sensitivity, its effect on intrahepatic triglyceride (IHTG) remains unclear. We investigated the effect of metformin on IHTG, hepatic de novo lipogenesis (DNL), and fatty acid (FA) oxidation in vivo in humans.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid enclosed envelopes that carry biologically active material such as proteins, RNA, metabolites and lipids. EVs can modulate the cellular status of other cells locally in tissue microenvironments or through liberation into peripheral blood. Adipocyte-derived EVs are elevated in the peripheral blood and show alterations in their cargo (RNA and protein) during metabolic disturbances, including obesity and diabetes.

View Article and Find Full Text PDF

Background And Aims: Nonalcoholic fatty liver disease (NAFLD) begins with steatosis, where a mixed macrovesicular pattern of large and small lipid droplets (LDs) develops. Since in vitro models recapitulating this are limited, the aims of this study were to develop mixed macrovesicular steatosis in immortalized hepatocytes and investigate effects on intracellular metabolism by altering nutritional substrates.

Methods: Huh7 cells were cultured in 11 mM glucose and 2% human serum (HS) for 7 days before additional sugars and fatty acids (FAs), either with 200 µM FAs (low fat low sugar; LFLS), 5.

View Article and Find Full Text PDF

A Nutrition Society member-led meeting was held on 9 January 2020 at The University of Surrey, UK. Sixty people registered for the event, and all were invited to participate, either through chairing a session, presenting a '3 min lightning talk' or by presenting a poster. The meeting consisted of an introduction to the topic by Dr Barbara Fielding, with presentations from eight invited speakers.

View Article and Find Full Text PDF
Article Synopsis
  • - The study identifies RSPO3 as a key factor influencing fat distribution in the body, particularly in how it affects waist-to-hip ratios and the amount of lower-body fat.
  • - Genetic variations linked to RSPO3 affect its expression in fat cells, leading to reduced lower-body fat, larger fat cells in the glutes, and insulin resistance.
  • - RSPO3 appears to restrict the growth of gluteofemoral fat by inhibiting fat cell creation while promoting fat growth in the abdominal area, highlighting a complex interaction with signaling pathways that differ between fat cell types.
View Article and Find Full Text PDF

Background: Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy.

Methods: Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling of tumour samples carried out before and after metformin treatment.

View Article and Find Full Text PDF
Article Synopsis
  • The original Article was mistakenly published with the wrong Copyright information.
  • The Copyright line has now been corrected in all formats: XML, PDF, and HTML.
  • Readers can access the updated versions to find the correct Copyright details.
View Article and Find Full Text PDF

Background: Bone morphogenetic proteins (BMPs) regulate adipogenesis but it is not clear whether they influence regional adipose tissue (AT) development in humans.

Objective: To characterise BMP2 expression, BMP2-SMAD1/5/8 signalling, and BMP2's potential effect on proliferation and adipogenesis in human subcutaneous abdominal and gluteal AT and its constituent preadipocytes.

Methods: BMP2 expression was measured in whole AT and immortalised preadipocytes via qPCR and Western blot; secreted/circulating BMP2 was measured by ELISA.

View Article and Find Full Text PDF

Background: Abdominal fat mass is associated with metabolic risk whilst gluteal femoral fat is paradoxically protective. MicroRNAs are known to be necessary for adipose tissue formation and function but their role in regulating human fat distribution remains largely unexplored.

Methods: An initial microarray screen of abdominal subcutaneous and gluteal adipose tissue, with validatory qPCR, identified microRNA-196a as being strongly differentially expressed between gluteal and abdominal subcutaneous adipose tissue.

View Article and Find Full Text PDF

Waist-to-hip ratio (WHR) is a prominent cardiometabolic risk factor that increases cardio-metabolic disease risk independently of BMI and for which multiple genetic loci have been identified. However, WHR is a relatively crude proxy for fat distribution and it does not capture all variation in fat distribution. We here present a study of the role of coding genetic variants on fat mass in 6 distinct regions of the body, based on dual-energy X-ray absorptiometry imaging on more than 17k participants.

View Article and Find Full Text PDF

Excessive consumption of free sugars (which typically includes a composite of glucose and fructose) is associated with an increased risk of developing chronic metabolic diseases including obesity, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes and cardiovascular disease. Determining the utilisation, storage and fate of dietary sugars in metabolically relevant tissues is fundamental to understanding their contribution to metabolic disease risk. To date, the study of fructose metabolism has primarily focused on the liver, where it has been implicated in impaired insulin sensitivity, increased fat accumulation and dyslipidaemia.

View Article and Find Full Text PDF

The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways.

View Article and Find Full Text PDF

Stable isotopes are powerful tools for tracing the metabolic fate of molecules in the human body. In this chapter, we focus on the use of deuterium (H), a stable isotope of hydrogen, in the study of human lipid metabolism within the liver in vivo in humans and in vitro using hepatocyte cellular models. The measurement of de novo lipogenesis (DNL) will be focussed on, as the synthesis of fatty acids, specifically palmitate, has been gathering momentum as being implicated in cellular dysfunction, which may be involved in the development of non-alcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of cartilage oligomeric matrix protein (COMP) in different types of human adipose tissue (subcutaneous abdominal and gluteal), highlighting its differential expression linked to fat distribution and function.
  • Researchers used various methods, including qPCR and Western blotting, to analyze COMP levels in tissue and cells, finding higher expression in gluteal fat compared to abdominal fat.
  • COMP levels were positively associated with body mass index (BMI) and overall adiposity but did not correlate with fat distribution, indicating that while COMP influences adipocyte biology, it may not directly dictate where fat is stored in the body.
View Article and Find Full Text PDF

Upper-body adiposity is associated with increased metabolic disease risk, while lower-body adiposity is paradoxically protective. Efforts to understand the underlying mechanisms require appropriate and reproducible in vitro culture models. We have therefore generated immortalised () human preadipocyte (PAD) cell lines derived from paired subcutaneous abdominal and gluteal adipose tissue.

View Article and Find Full Text PDF

In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ.

View Article and Find Full Text PDF

The distribution of adipose tissue in the body has wide-ranging and reproducible associations with health and disease. Accumulation of adipose tissue in the upper body (abdominal obesity) is associated with the development of cardiovascular disease, insulin resistance, type 2 diabetes mellitus and even all-cause mortality. Conversely, accumulation of fat in the lower body (gluteofemoral obesity) shows opposite associations with cardiovascular disease and type 2 diabetes mellitus when adjusted for overall fat mass.

View Article and Find Full Text PDF

An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent.

View Article and Find Full Text PDF

Upper- and lower-body fat depots exhibit opposing associations with obesity-related metabolic disease. We defined the relationship between DEXA-quantified fat depots and diabetes/cardiovascular risk factors in a healthy population-based cohort (n = 3,399). Gynoid fat mass correlated negatively with insulin resistance after total fat mass adjustment, whereas the opposite was seen for abdominal fat.

View Article and Find Full Text PDF

The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1n-7). Using venoarterial difference sampling, we investigated the relative release of 16:1n-7 from lower-body (gluteofemoral) and upper-body (abdominal subcutaneous) AT depots.

View Article and Find Full Text PDF

The primary products of de novo lipogenesis (DNL) are saturated fatty acids, which confer adverse cellular effects. Human adipocytes differentiated with no exogenous fat accumulated triacylglycerol (TG) in lipid droplets and differentiated normally. TG composition showed the products of DNL (saturated fatty acids from 12:0 to 18:0) together with unsaturated fatty acids (particularly 16:1n-7 and 18:1n-9) produced by elongation/desaturation.

View Article and Find Full Text PDF