Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in β-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.
View Article and Find Full Text PDFLysosomal storage disorders (LSDs) are inherited diseases that result from the intracellular accumulation of incompletely degraded macromolecules. The majority of LSDs affect both the peripheral and central nervous systems and are not effectively treated by enzyme replacement therapy, substrate reduction therapy, or bone marrow transplantation. Advances in adeno-associated virus and retroviral vector development over the past decade have resurged gene therapy as a promising therapeutic intervention for these monogenic diseases.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) VII is a lysosomal storage disorder caused by the deficiency of the enzyme β-glucuronidase (Gusb(-/-)) and results in glycosaminoglycan (GAG) accumulation. Skeletal abnormalities include stunted long bones and bone degeneration. GAGs have been hypothesized to activate toll-like receptor 4 (Tlr4) signaling and the complement pathway, resulting in upregulation of inflammatory cytokines that suppress growth and cause degeneration of the bone.
View Article and Find Full Text PDFMucopolysaccharidosis I (MPS I) is a lysosomal storage disease characterized by deficient α-L-iduronidase activity, leading to the accumulation of poorly degraded glycosaminoglycans (GAGs). Children with MPS I exhibit high incidence of spine disease, including accelerated disc degeneration and vertebral dysplasia, which in turn lead to spinal cord compression and kyphoscoliosis. In this study we investigated the efficacy of neonatal enzyme replacement therapy (ERT), alone or in combination with oral simvastatin (ERT + SIM) for attenuating cervical spine disease progression in MPS I, using a canine model.
View Article and Find Full Text PDFMucopolysaccharidosis VII (MPS VII) is due to deficient activity of the lysosomal enzyme β-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs). This study determined the long-term effect of neonatal intravenous injection of a gamma retroviral vector (RV) on cardiac valve disease in MPS VII dogs. Transduced hepatocytes secreted GUSB into the blood for up to 11 years at levels similar to or greater than those achieved with enzyme replacement therapy (ERT).
View Article and Find Full Text PDFMucopolysaccharidosis VII (MPS VII) is due to the deficient activity of β-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs) in lysosomes and multisystemic disease with cardiovascular manifestations. The goal here was to determine the pathogenesis of mitral valve (MV) disease in MPS VII dogs. Untreated MPS VII dogs had a marked reduction in the histochemical signal for structurally-intact collagen in the MV at 6 months of age, when mitral regurgitation had developed.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy.
View Article and Find Full Text PDFIntroduction: Mucopolysaccharidosis I (MPS I) is a lysosomal storage disorder characterized by deficient α-l-iduronidase activity leading to accumulation of poorly degraded dermatan and heparan sulfate glycosaminoglycans (GAGs). MPS I is associated with significant cervical spine disease, including vertebral dysplasia, odontoid hypoplasia, and accelerated disk degeneration, leading to spinal cord compression and kypho-scoliosis. The objective of this study was to establish the nature and rate of progression of cervical vertebral bone disease in MPS I using a canine model.
View Article and Find Full Text PDFMucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Systemic gene therapy to MPS I mice can reduce lysosomal storage in the brain, but few data are available regarding the effect upon behavioral function. We investigated the effect of gene therapy with a long-terminal-repeat (LTR)-intact retroviral vector or a self-inactivating (SIN) vector on behavioral function in MPS I mice.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) type I (Hurler syndrome) is a lysosomal storage disorder characterized by deficiency of alpha-L-iduronidase (IDUA), intracellular storage of glycosaminoglycans (GAGs) and progressive neurological pathology. The MPS I mouse model provides an opportunity to study the pathophysiology of this disorder and to determine the efficacy of novel therapies. Previous work has demonstrated a series of abnormalities in MPS I mice behavior, but so far some important brain functions have not been addressed.
View Article and Find Full Text PDFMucopolysaccharidosis type VII (MPS VII) is characterized by deficient β-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan and dermatan sulfate glycosaminoglycans (GAGs), and multisystemic disease. MPS VII patients can develop kypho-scoliotic deformity and spinal cord compression due to disease of intervertebral disks, vertebral bodies, and associated tissues. We have previously demonstrated in MPS VII dogs that intervertebral disks degenerate, vertebral bodies have irregular surfaces, and vertebral body epiphyses have reduced calcification, but the pathophysiological mechanisms underlying these changes are unclear.
View Article and Find Full Text PDFMucopolysaccharidosis VII (MPS VII) is due to deficient β-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan, and dermatan sulfate glycosaminoglycans in various tissues including those of the spine. Associated spine disease can be due to abnormalities in the vertebrae, the intervertebral disks, or other spine tissues. The goal of this study was to determine if neonatal gene therapy could prevent lumbar spine disease in MPS VII dogs.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) VI is due to a deficiency in the activity of N-acetylgalactosamine 4-sulfatase (4S), also known as arylsulfatase B. Previously, retroviral vector (RV)-mediated neonatal gene therapy reduced the clinical manifestations of MPS I and MPS VII in mice and dogs. However, sulfatases require post-translational modification by sulfatase-modifying factors.
View Article and Find Full Text PDFMucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme β-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation, which is associated with upregulation of the elastases cathepsin S (CtsS) and matrix metalloproteinase 12 (MMP12). To test the role of these enzymes, MPS VII mice were crossed with mice deficient in CtsS or MMP12, and the effect upon aortic dilatation was determined.
View Article and Find Full Text PDFThe mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders caused by the absence of functional enzymes that contribute to the degradation of glycosaminoglycans (GAGs). The progressive systemic deposition of GAGs results in multi-organ system dysfunction that varies with the particular GAG deposited and the specific enzyme mutation(s) present. Cardiac involvement has been reported in all MPS syndromes and is a common and early feature, particularly for those with MPS I, II, and VI.
View Article and Find Full Text PDFGene therapy is a procedure resulting in the transfer of a gene(s) into an individual's cells to treat a disease, which is designed to produce a protein or functional RNA (the gene product). Although most current gene therapy clinical trials focus on cancer and inherited diseases, multiple studies have evaluated the efficacy of gene therapy to abrogate various forms of heart disease. Indeed, human clinical trials are currently underway.
View Article and Find Full Text PDFEnzyme replacement therapy (ERT) with intravenous recombinant human alpha-l-iduronidase (IV rhIDU) is a treatment for patients with mucopolysaccharidosis I (MPS I). Spinal cord compression develops in MPS I patients due in part to dural and leptomeningeal thickening from accumulated glycosaminoglycans (GAG). We tested long-term and every 3-month intrathecal (IT) and weekly IV rhIDU in MPS I dogs age 12-15months (Adult) and MPS I pups age 2-23days (Early) to determine whether spinal cord compression could be reversed, stabilized, or prevented.
View Article and Find Full Text PDFMucopolysaccharidosis I (MPS I) and MPS VII are due to loss-of-function mutations within the genes that encode the lysosomal enzymes alpha-l-iduronidase and beta-glucuronidase, respectively, and result in accumulation of glycosaminoglycans and multisystemic disease. Both disorders are associated with elastin fragmentation and dilatation of the aorta. Here, the pathogenesis and effect of gene therapy on aortic disease in canine models of MPS was evaluated.
View Article and Find Full Text PDFMucopolysaccharidosis VII (MPS VII) is a lysosomal storage disorder characterized by a deficiency in beta-glucuronidase activity, leading to systemic accumulation of poorly degraded glycosaminoglycans (GAG). Along with other morbidities, MPS VII is associated with pediatric spinal deformity. The objective of this study was to examine potential associations between abnormal lumbar spine matrix structure and composition in MPS VII, and spine segment and tissue-level mechanical properties, using a naturally occurring canine model with a similar clinical phenotype to the human form of the disorder.
View Article and Find Full Text PDFNeonatal intravenous injection of gammaretroviral vectors (gamma-RVs) with an intact long terminal repeat (LTR) and an internal liver promoter can result in long-term expression in liver cells and correction of mucopolysaccharidosis. Some expression also occurs in blood cells and brain, which likely derives from the LTR, and may contribute to clinical efficacy. The goal of this project was to determine whether neonatal gene therapy with an LTR-intact gamma-RV would induce tumors in mice.
View Article and Find Full Text PDFMucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to deficiency in alpha-L-iduronidase (IDUA) that results in accumulation of glycosaminoglycans (GAGs) throughout the body, causing numerous clinical defects. Intravenous administration of a gamma-retroviral vector (gamma-RV) with an intact long terminal repeat (LTR) reduced the clinical manifestations of MPS I, but could cause insertional mutagenesis. Although self-inactivating (SIN) gamma-RVs in which the enhancer and promoter elements in the viral LTR are absent after transduction reduces this risk, such vectors could be less effective.
View Article and Find Full Text PDF