Hydraulic fracturing for oil and gas extraction produces large volumes of wastewater, termed flowback and produced water (FPW), that are highly saline and contain a variety of organic and inorganic contaminants. In the present study, FPW samples from ten hydraulically fractured wells, across two geologic formations were collected at various timepoints. Samples were analyzed to determine spatial and temporal variation in their inorganic composition.
View Article and Find Full Text PDFIntertidal mussels are well adapted to withstand emersion from water during low tide, but they may be intermittently exposed to waterborne toxicants such as copper, which targets physiological processes including metabolism, ammonia excretion, and osmoregulation. To determine if copper exposure damages intertidal organisms' ability to tolerate tidal emersion, Mediterranean mussels (Mytilus galloprovincialis) were exposed to copper for 96 h followed by 6 h of emersion. Oxygen uptake increased after copper exposure which suggests that copper accumulation caused moderate stress in the mussels, but ammonia excretion and anaerobic metabolism were unaffected by mixed copper and emersion exposures.
View Article and Find Full Text PDFHydraulic fracturing extracts oil and gas through the injection of water and proppants into subterranean formations. These injected fluids mix with the host rock formation and return to the surface as a complex wastewater containing salts, metals, and organic compounds, termed flowback and produced water (FPW). Previous research indicates that FPW is toxic to , impairing reproduction, molting, and maturation time; however, recovery from FPW has not been extensively studied.
View Article and Find Full Text PDFDuring hydraulic fracturing, wastewaters - termed flowback and produced water (FPW) - are created as a by-product during hydrocarbon extraction. Given the large volumes of FPW that a single well can produce, and the history of FPW release to surface water bodies, it is imperative to understand the hazards that hydraulic fracturing and FPW pose to aquatic biota. Using rainbow trout embryos as model organisms, we investigated impacts to cardio-respiratory system development and function following acute (48 h) and sub-chronic (28-day) FPW exposure by examining occurrences of developmental deformities, rates of embryonic respiration (MO), and changes in expression of critical cardiac-specific genes.
View Article and Find Full Text PDFHydraulic fracturing creates large volumes of flowback and produced water (FPW). The waste is a complex mixture of organic and inorganic constituents. Although the acute toxicity of FPW to freshwater organisms has been studied, few have attempted to discern the interaction between organic and inorganic constituents within this matrix and its role in toxicity.
View Article and Find Full Text PDFHydraulic fracturing has become widely used in recent years to access vast global unconventional sources of oil and gas. This process involves the injection of proprietary mixtures of water and chemicals to fracture shale formations and extract the hydrocarbons trapped within. These injection fluids, along with minerals, hydrocarbons, and saline waters present within the formations being drilled into, return to the surface as flowback and produced water (FPW).
View Article and Find Full Text PDF