Publications by authors named "Katherine N Elfer"

Real-time on-site histopathology review of biopsy tissues at the point-of-procedure has great potential for significant clinical value and improved patient care. For instance, on-site review can aid in rapid screening of diagnostic biopsies to reduce false-negative results, or in quantitative assessment of biospecimen quality to increase the efficacy of downstream laboratory and histopathology analysis. However, the only currently available rapid pathology method, frozen section analysis (FSA), is too time- and labor-intensive for use in screening large quantities of biopsy tissues and is too destructive for maximum tissue conservation in multiple small needle core biopsies.

View Article and Find Full Text PDF

Objective: To present a novel imaging technique used for rapid, nondestructive histological assessment of renal neoplasias using a dual-component fluorescence stain and structured illumination microscopy (SIM).

Materials And Methods: After Institutional Review Board approval, 65 total biopsies were obtained from 19 patients undergoing partial or radical nephrectomy. Biopsies were stained with a dual-component fluorescent, and optically sectioned SIM images were obtained from the surface of the intact biopsies.

View Article and Find Full Text PDF

Achieving cancer-free surgical margins in oncologic surgery is critical to reduce the need for additional adjuvant treatments and minimize tumor recurrence; however, there is a delicate balance between completeness of tumor removal and preservation of adjacent tissues critical for normal post-operative function. We sought to establish the feasibility of video-rate structured illumination microscopy (VR-SIM) of the intact removed tumor surface as a practical and non-destructive alternative to intra-operative frozen section pathology, using prostate cancer as an initial target. We present the first images of the intact human prostate surface obtained with pathologically-relevant contrast and subcellular detail, obtained in 24 radical prostatectomy specimens immediately after excision.

View Article and Find Full Text PDF

Rapid assessment of prostate core biopsy pathology at the point-of-procedure could provide benefit in a variety of clinical situations. Even with advanced transrectal ultrasound guidance and saturation biopsy protocols, prostate cancer can be missed in up to half of all initial biopsy procedures. In addition, collection of tumor specimens for downstream histologic, molecular, and genetic analysis is hindered by low tumor yield due to inability to identify prostate cancer grossly.

View Article and Find Full Text PDF

Reduction of warm ischemia time during partial nephrectomy (PN) is critical to minimizing ischemic damage and improving postoperative kidney function, while maintaining tumor resection efficacy. Recently, methods for localizing the effects of warm ischemia to the region of the tumor via selective clamping of higher-order segmental artery branches have been shown to have superior outcomes compared with clamping the main renal artery. However, artery identification can prolong operative time and increase the blood loss and reduce the positive effects of selective ischemia.

View Article and Find Full Text PDF

We report the development of a structured illumination microscopy instrument specifically designed for the requirements for high-area-throughput, optically-sectioned imaging of large, fluorescently-stained tissue specimens. The system achieves optical sectioning frame-rates of up to 33 Hz (and pixel sampling rates of up to 138.4 MHz), by combining a fast, ferroelectric spatial light modulator for pattern generation with the latest large-format, high frame-rate scientific CMOS camera technology.

View Article and Find Full Text PDF