Publications by authors named "Katherine Musick"

New strategies for converting signals between optical and microwave domains could play a pivotal role in advancing both classical and quantum technologies. Traditional approaches to optical-to-microwave transduction typically perturb or destroy the information encoded on intensity of the light field, eliminating the possibility for further processing or distribution of these signals. In this paper, we introduce an optical-to-microwave conversion method that allows for both detection and spectral analysis of microwave photonic signals without degradation of their information content.

View Article and Find Full Text PDF

We demonstrate an optical waveguide device, capable of supporting the high, in-vacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magneto-optical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading.

View Article and Find Full Text PDF

A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters.

View Article and Find Full Text PDF

Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves.

View Article and Find Full Text PDF

A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness.

View Article and Find Full Text PDF

Proof-of-concept studies that display the potential of using a glucose-sensitive hydrogel as a continuous glucose sensor are presented. The swelling ratio, porosity, and diffusivity of the hydrogel increased with glucose concentration. In glucose solutions of 50, 100, 200, and 300 mg/dL, the hydrogel swelling ratios were 4.

View Article and Find Full Text PDF

We present proof-of-concept studies that display the potential for using a glucose-sensitive hydrogel as a continuous glucose sensor. A study to characterize the swelling ratio of the hydrogel at normal physiological and pathological hyperglycemic glucose levels was performed. The hydrogel exposed to the hyperglycemic glucose solution had a higher equilibrium swelling ratio than the hydrogel exposed to the normal glucose concentration solution.

View Article and Find Full Text PDF

Background: A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process.

View Article and Find Full Text PDF

This work demonstrates the design, fabrication, packaging, characterization, and functionality of an electrically and fluidically active three-dimensional micro-electrode array (3D MEA) for use with neuronal cell cultures. The successful function of the device implies that this basic concept-construction of a 3D array with a layered approach-can be utilized as the basis for a new family of neural electrode arrays. The 3D MEA prototype consists of a stack of individually patterned thin films that form a cell chamber conducive to maintaining and recording the electrical activity of a long-term three-dimensional network of rat cortical neurons.

View Article and Find Full Text PDF

Here we present a novel idea for a replaceable insulator, and thus advance toward the goal of a single-use planar microelectrode array (MEA) for the study of electrogenic tissues. The concept of a replaceable insulator is motivated by insulator degradation after repeated usage of an MEA. Instead of fabricating a more durable insulator for repeated MEA usage, we propose replacing the insulator and effectively producing a fresh MEA for each experiment.

View Article and Find Full Text PDF