Publications by authors named "Katherine Matej"

Biofilms are ubiquitous surface-associated bacterial communities embedded in an extracellular matrix. It is commonly assumed that biofilm cells are glued together by the matrix; however, how the specific biochemistry of matrix components affects the cell-matrix interactions and how these interactions vary during biofilm growth remain unclear. Here, we investigate cell-matrix interactions in Vibrio cholerae, the causative agent of cholera.

View Article and Find Full Text PDF
Article Synopsis
  • Biofilms are communities of bacteria that attach to surfaces and are held together by a matrix, but how this matrix interacts with the cells is not fully understood.
  • The study focuses on *Vibrio cholerae*, the bacteria responsible for cholera, and reveals that the main matrix component, Vibrio polysaccharide (VPS), does not attract the cells, but a protein called Bap1 helps link the cells together.
  • As biofilms age, changes in VPS levels and a process called surface trimming lead to a shift in cell-matrix interactions from attractive to repulsive, promoting cell dispersal and potentially enriching our understanding of biofilm growth dynamics in other microorganisms.
View Article and Find Full Text PDF

Bacterial biofilms are formed on environmental surfaces and host tissues, and facilitate host colonization and antibiotic resistance by human pathogens. Bacteria often express multiple adhesive proteins (adhesins), but it is often unclear whether adhesins have specialized or redundant roles. Here, we show how the model biofilm-forming organism Vibrio cholerae uses two adhesins with overlapping but distinct functions to achieve robust adhesion to diverse surfaces.

View Article and Find Full Text PDF