This research studies two nonlinear ultrasound techniques: second harmonic generation and nonlinear resonant ultrasound spectroscopy, and the relationship to microstructural mechanisms in metals. The results show that there is a large change in both the classical, β, and nonclassical, α, ultrasound nonlinearity parameters in response to three specific microstructural mechanisms: precipitate growth in and along the grain boundaries, dislocations, and precipitate pinned dislocations. For example, both β and α increase with the growth of the precipitate radii (precipitate-pinned-dislocations).
View Article and Find Full Text PDF