Intravesical Bacillus Calmette-Guérin (BCG) is a standard therapy for non-muscle-invasive bladder cancer used in urology clinics and inpatient settings. We present a review of infection risks to patients receiving intravesical BCG, healthcare personnel who prepare and administer BCG, and other patients treated in facilities where BCG is prepared and administered. Knowledge of these risks and relevant regulations informs appropriate infection prevention measures.
View Article and Find Full Text PDFBackground: The rapid spread of coronavirus disease 2019 (COVID-19) required swift preparation to protect healthcare personnel (HCP) and patients, especially considering shortages of personal protective equipment (PPE). Due to the lack of a pre-existing biocontainment unit, we needed to develop a novel approach to placing patients in isolation cohorts while working with the pre-existing physical space.
Objectives: To prevent disease transmission to non-COVID-19 patients and HCP caring for COVID-19 patients, to optimize PPE usage, and to provide a comfortable and safe working environment.
Background: The COVID-19 pandemic has had a substantial effect on the delivery of psychiatric health care. Inpatient psychiatric health care facilities have experienced outbreaks of COVID-19, making these areas particularly vulnerable.
Methods: Our facility used a multidisciplinary approach to implement enhanced infection prevention and control (IPC) interventions in our psychiatric health care areas.
[Fe]-Hydrogenase catalyzes the hydrogenation of a biological substrate via the heterolytic splitting of molecular hydrogen. While many synthetic models of [Fe]-hydrogenase have been prepared, none yet are capable of activating H2 on their own. Here, we report the first Fe-based functional mimic of the active site of [Fe]-hydrogenase, which was developed based on a mechanistic understanding.
View Article and Find Full Text PDF[Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe(2+) is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear.
View Article and Find Full Text PDF[Fe]-hydrogenase is a newly characterized type of hydrogenase. This enzyme heterolytically splits hydrogen in the presence of a natural substrate. The active site of the enzyme contains a mono-iron complex with intriguing iron-acyl ligation.
View Article and Find Full Text PDFA series of iridium and rhodium pincer complexes have been synthesized and characterized: [(POCOP)Ir(H)(H(2))] [BAr(f)(4)] (1-H(3)), (POCOP)Rh(H(2)) (2-H(2)), [(PONOP)Ir(C(2)H(4))] [BAr(f)(4)] (3-C(2)H(4)), [(PONOP)Ir(H)(2))] [BAr(f)(4)] (3-H(2)), [(PONOP)Rh(C(2)H(4))] [BAr(f)(4)] (4-C(2)H(4)) and [(PONOP)Rh(H(2))] [BAr(f)(4)] (4-H(2)) (POCOP = κ(3)-C(6)H(3)-2,6-[OP(tBu)(2)](2); PONOP = 2,6-(tBu(2)PO)(2)C(5)H(3)N; BAr(f)(4) = tetrakis(3,5-trifluoromethylphenyl)borate). The nature of the dihydrogen-metal interaction was probed using NMR spectroscopic studies. Complexes 1-H(3), 2-H(2), and 4-H(2) retain the H-H bond and are classified as η(2)-dihydrogen adducts.
View Article and Find Full Text PDF