Publications by authors named "Katherine M Roberts-Thomson"

Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and prediabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF before impairing insulin-stimulated glucose disposal.

View Article and Find Full Text PDF

Adipose tissue microvascular blood flow (MBF) is stimulated postprandially to augment delivery of nutrients and hormones to adipocytes. Adipose tissue MBF is impaired in type 2 diabetes (T2D). Whether healthy individuals at-risk of T2D show similar impairments is unknown.

View Article and Find Full Text PDF

There is increasing evidence that skeletal muscle microvascular (capillary) blood flow plays an important role in glucose metabolism by increasing the delivery of glucose and insulin to the myocytes. This process is impaired in insulin-resistant individuals. Studies suggest that in diet-induced insulin-resistant rodents, insulin-mediated skeletal muscle microvascular blood flow is impaired post-short-term high fat feeding, and this occurs before the development of myocyte or whole-body insulin resistance.

View Article and Find Full Text PDF

Insulin infusion increases skeletal muscle microvascular blood flow (MBF) in healthy people but is impaired during insulin resistance. However, we have shown that eliciting insulin secretion via oral glucose loading in healthy people impairs muscle MBF, whilst others have demonstrated intravenous glucose infusion stimulates MBF. We aimed to show that the route of glucose administration (oral versus intravenous) influences muscle MBF, and explore potential gut-derived hormones that may explain these divergent responses.

View Article and Find Full Text PDF

Aims/hypothesis: Microvascular blood flow (MBF) increases in skeletal muscle postprandially to aid in glucose delivery and uptake in muscle. This vascular action is impaired in individuals who are obese or have type 2 diabetes. Whether MBF is impaired in normoglycaemic people at risk of type 2 diabetes is unknown.

View Article and Find Full Text PDF

Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control.

View Article and Find Full Text PDF

Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis.

View Article and Find Full Text PDF