Publications by authors named "Katherine M Rentschler"

Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions.

View Article and Find Full Text PDF

Acrolein is a significant component of anthropogenic and wildfire emissions, as well as cigarette smoke. Although acrolein primarily deposits in the upper respiratory tract upon inhalation, patterns of site-specific injury in nasal pulmonary tissues are not well characterized. This assessment is critical in the design of and studies performed for assessing health risk of irritant air pollutants.

View Article and Find Full Text PDF

Acrolein, a respiratory irritant, induces systemic neuroendocrine stress. However, peripheral metabolic effects have not been examined. Male and female WKY rats were exposed to air (0 ppm) or acrolein (3.

View Article and Find Full Text PDF

Patients with neurocognitive disorders often battle sleep disturbances. Kynurenic acid is a tryptophan metabolite of the kynurenine pathway implicated in the pathology of these illnesses. Modest increases in kynurenic acid, an antagonist at glutamatergic and cholinergic receptors, result in cognitive impairments and sleep dysfunction.

View Article and Find Full Text PDF

Sleep studies are imperative to recapitulate phenotypes associated with sleep loss and uncover mechanisms contributing to psychopathology. Most often, investigators manually classify the polysomnography into vigilance states, which is time-consuming, requires extensive training, and is prone to inter-scorer variability. While many works have successfully developed automated vigilance state classifiers based on multiple EEG channels, we aim to produce an automated and openaccess classifier that can reliably predict vigilance state based on a single cortical electroencephalogram (EEG) from rodents to minimize the disadvantages that accompany tethering small animals via wires to computer programs.

View Article and Find Full Text PDF

Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit.

View Article and Find Full Text PDF

Dysregulation of the kynurenine pathway (KP) of tryptophan catabolism has been implicated in psychotic disorders, including schizophrenia and bipolar disorder. Kynurenic acid (KYNA) is a KP metabolite synthesized by kynurenine aminotransferases (KATs) from its biological precursor kynurenine and acts as an endogenous antagonist of N-methyl-D-aspartate and α7-nicotinic acetylcholine receptors. Elevated KYNA levels found in postmortem brain tissue and cerebrospinal fluid of patients are hypothesized to play a key role in the etiology of cognitive symptoms observed in psychotic disorders.

View Article and Find Full Text PDF

Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs.

View Article and Find Full Text PDF

Cysteine protease inhibitors have long been part of drug discovery programs for Alzheimer's disease (AD), traumatic brain injury (TBI), and other disorders. Select inhibitors reduce accumulating proteins and AD pathology in mouse models. One such compound, Z-Phe-Aladiazomethylketone (PADK), exhibits a very weak IC (9-11 μM) towards cathepsin B (CatB), but curiously PADK causes marked up-regulation of the Aβ-degrading CatB and improves spatial memory.

View Article and Find Full Text PDF