Publications by authors named "Katherine M Foley"

Immunoaffinity chromatography is a powerful tool for purification of proteins and protein complexes. The availability of monoclonal antibodies (mAbs) has revolutionized the field of immunoaffinity chromatography by providing a continuous supply of highly uniform antibody. Before the availability of mAbs, the recovery of the target protein from immobilized polyclonal antibodies usually required very harsh, often denaturing conditions.

View Article and Find Full Text PDF

The "B-finger" of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeLa cell nuclear extract (NE).

View Article and Find Full Text PDF

The TATA-binding protein (TBP) plays a central role in the assembly of most eukaryotic transcription initiation complexes. We have characterized 3 monoclonal antibodies (mAbs) that react in the far amino-terminal (N-terminal) domain of the human TBP molecule (residues 1-99). One of these mAbs (designated 1TBP22) is a polyol-responsive monoclonal antibody (PR-mAb) and was adapted to an immunoaffinity chromatography procedure for purifying bacterially expressed, recombinant human TBP.

View Article and Find Full Text PDF