Purpose: Over 90% of uveal melanomas harbor pathogenic variants of the GNAQ or GNA11 genes that activate survival pathways. As previous studies found that Ras-mutated cell lines were vulnerable to a combination of survival pathway inhibitors and the histone-deacetylase inhibitor romidepsin, we investigated whether this combination would be effective in models of uveal melanoma.
Methods: A small-scale screen of inhibitors of bromodomain-containing protein 4 (BRD4; OTX-015), extracellular signal-related kinase (ERK; ulixertinib), mechanistic target of rapamycin (mTOR; AZD-8055), or phosphoinositide 3-kinase (PI3K; GDC-0941) combined with a clinically relevant administration of romidepsin was performed on a panel of uveal melanoma cell lines (92.
Hexokinase 1 and 2 have been shown to inhibit Bak- and Bax-mediated apoptosis, leading us to combine the histone deacetylase inhibitor romidepsin with clotrimazole or bifonazole, two compounds that reportedly decrease mitochondrial localization of hexokinases. Cancer cell lines derived from breast, kidney, lung, colon or ovarian cancers were treated with a short-term exposure to 25 ng/ml romidepsin combined with either clotrimazole or bifonazole. The combination of romidepsin with 25 µM clotrimazole or bifonazole resulted in increased annexin staining compared to cells treated with any of the drugs alone.
View Article and Find Full Text PDF