GTP-l-fucose pyrophosphorylase(GFPP) catalyzes the reversible formation of the nucleotide-sugar GDP-beta-l-fucose from guanosine triphosphate and beta-l-fucose-1-phosphate. The enzyme functions primarily in the mammalian liver and kidney to salvage free fucose during the breakdown of glycoproteins and glycolipids. GFPP shares little primary sequence identity with other nucleotide-sugar metabolizing enzymes, and the three-dimensional structure of the protein is unknown.
View Article and Find Full Text PDFGTP-l-fucose pyrophosphorylase (GFPP, E. C. 2.
View Article and Find Full Text PDFThe second series of flexible shape-modified nucleosides is introduced. The "fleximers" feature the purine ring systems split into their individual imidazole and pyrimidine components. This structural modification serves to introduce flexibility to the nucleoside while still retaining the elements essential for recognition.
View Article and Find Full Text PDFThe synthesis of two flexible nucleosides is presented. The "fleximers" feature the purine ring system split into its imidazole and pyrimidine components. This modification serves to introduce flexibility to the nucleoside while still retaining the elements essential for molecular recognition.
View Article and Find Full Text PDFThe nuclear receptor retinoid X receptor (RXR) is a ligand-activated transcription factor. To create receptors for a new ligand, a structure-based approach was used to generate a library of approximately 380,000 mutant RXR genes. To discover functional variants within the library, we used chemical complementation, a method of protein engineering that uses the power of genetic selection.
View Article and Find Full Text PDFA detailed (1)H NMR conformational study complemented with ab initio computations was performed in solution on fleximer nucleosides 1, 3, and 5 in relation to their natural counterparts. The substitution of the purine nucleobase found in the natural nucleosides with a more flexible two-ring heterocyclic system strongly increased the population of anti conformation around the glycosidic bond. This was accompanied by a large shift toward a north-type sugar conformation, which was explained by the interplay of anomeric, gauche, and steric effects.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2003
A series of chlorinated adenine analogues were designed with sights set on the development of potential antitumor agents. During the synthetic efforts, two unexpected compounds were identified. Their synthesis, along with synthesis of the chlorinated targets is presented herein.
View Article and Find Full Text PDF[structure: see text] Isoadenosine (IsoA), a structural isomer of adenosine, was shown to possess interesting biological activity but was inherently unstable. In an effort to overcome this, we have designed a series of carbocyclic IsoA analogues, combining the unique connectivity of IsoA with the structural features of some biologically significant Neplanocin A analogues. Their design, synthesis, and structural elucidation is reported.
View Article and Find Full Text PDFA series of shape-modified flexible nucleosides ('fleximers', 1, 2, and 3) was modeled, synthesized and subsequently assayed against S-adenosyl-L-homocysteine hydrolase (SAHase). No inhibitory activity was observed for the adenosine fleximer, which served as a substrate, but moderate inhibitory activity was exhibited by the guanosine fleximers. This is the first known report of a guanosine nucleoside analogue possessing activity against SAHase.
View Article and Find Full Text PDFA new class of shape-modified nucleosides is introduced. These novel "fleximers" feature the purine ring systems of adenosine, inosine, and guanosine split into their individual imidazole and pyrimidine components (as in 1-3). This structural modification serves to introduce flexibility into the nucleoside while still retaining the elements essential for recognition.
View Article and Find Full Text PDF