Publications by authors named "Katherine Kulig"

In pre-clinical safety studies, drug-induced vascular injury (DIVI) is defined as an adverse response to a drug characterized by degenerative and hyperplastic changes of endothelial cells and vascular smooth muscle cells. Inflammation may also be seen, along with extravasation of red blood cells into the smooth muscle layer (i.e.

View Article and Find Full Text PDF

Decellularized extracellular matrix (ECM) biomaterials are increasingly used in regenerative medicine for abdominal tissue repair. Emerging ECM biomaterials with greater compliance target surgical procedures like breast and craniofacial reconstruction to enhance aesthetic outcome. Clinical studies report improved outcomes with newly designed ECM scaffolds, but their comparative biological characteristics have received less attention.

View Article and Find Full Text PDF

Background: Carved autologous costal cartilage and porous polyethylene implants (Medpor) are the most common approaches for total ear reconstruction, but these approaches may have inconsistent cosmetic outcomes, a high risk of extrusion, or other surgical complications. Engineering ear cartilage to emulate native auricular tissue is an appealing approach, but often the cell-seeded scaffolds are susceptible to shrinkage and architectural changes when placed in vivo. The aim of this study was to assess the most favorable conditions for in vitro pre-culture of cell-seeded type I collagen scaffolds prior to in vivo implantation.

View Article and Find Full Text PDF

Liver transplantation remains the only definitive treatment for liver failure and is available to only a tiny fraction of patients with end-stage liver diseases. Major limitations for the procedure include donor organ shortage, high cost, high level of required expertise, and long-term consequences of immune suppression. Alternative cell-based liver therapies could potentially greatly expand the number of patients provided with effective treatment.

View Article and Find Full Text PDF

Objectives: We developed a large animal model for auricular reconstruction with engineered cartilage frameworks and evaluated the performance of porous polyethylene auricular implants in this model.

Methods: Eighteen high-density porous polyethylene auricular frameworks were implanted subcutaneously in the infra-auricular areas of 9 sheep. The implants were harvested 17 weeks later for gross and histologic examination.

View Article and Find Full Text PDF

Tissue-engineered cartilage has historically been an attractive alternative treatment option for auricular reconstruction. However, the ability to reliably generate autologous auricular neocartilage in an immunocompetent preclinical model should first be established. The objectives of this study were to demonstrate engineered autologous auricular cartilage in the immunologically aggressive subcutaneous environment of an immunocompetent animal model, and to determine the impact of in vitro culture duration of chondrocyte-seeded constructs on the quality of neocartilage maturation in vivo.

View Article and Find Full Text PDF

Surgical scaffold materials manufactured from donor human or animal tissue are increasingly being used to promote soft tissue repair and regeneration. The clinical product consists of the residual extracellular matrix remaining after a rigorous decellularization process. Optimally, the material provides both structural support during the repair period and cell guidance cues for effective incorporation into the regenerating tissue.

View Article and Find Full Text PDF

Background: Hepatic stellate cells (HSC) play a major role in the progression of liver fibrosis.

Aim: The aim of our study was to investigate whether rat HSC cultured on a nanofiber membrane (NM) retain their quiescent phenotype during both short- and long-term culture and whether activated HSC revert to a quiescent form when re-cultured on NM.

Methods: Rat HSC cultured for 1 day on plastic plates (PP) were used as quiescent HSC, while cells cultured for 1 week on PP were considered to be activated HSC.

View Article and Find Full Text PDF

Engineered cartilage composed of a patient's own cells can become a feasible option for auricular reconstruction. However, distortion and shrinkage of ear-shaped constructs during scaffold degradation and neocartilage maturation in vivo have hindered the field. Scaffolds made of synthetic polymers often generate degradation products that cause an inflammatory reaction and negatively affect neocartilage formation in vivo.

View Article and Find Full Text PDF

Objective: This study evaluates a novel liver-assist device platform with a microfluidics-modeled vascular network in a femoral arteriovenous shunt in rats.

Summary Of Background Data: Liver-assist devices in clinical trials that use pumps to force separated plasma through packed beds of parenchymal cells exhibited significant necrosis with a negative impact on function.

Methods: Microelectromechanical systems technology was used to design and fabricate a liver-assist device with a vascular network that supports a hepatic parenchymal compartment through a nanoporous membrane.

View Article and Find Full Text PDF

Objective: To evaluate the degree of neovascularization and efficacy of repair of chronic tympanic membrane perforations in a chinchilla model using poly(glycerol sebacate) (PGS), a novel bioengineered scaffold material.

Study Design: A feasibility study in which chinchilla ears with chronic perforations were randomly assigned to repair with PGS plugs or Gelfilm overlay myringoplasty.

Setting: Interventions were performed in the animal care facility of a tertiary care academic institution.

View Article and Find Full Text PDF

Synthetic substrates that mimic the properties of extracellular matrix proteins hold significant promise for use in systems designed for tissue engineering applications. In this report, we designed a synthetic polymeric substrate that is intended to mimic chemical, mechanical, and topological characteristics of collagen. We found that elastomeric poly(ester amide) substrates modified with replica-molded nanotopographic features enhanced initial attachment, spreading, and adhesion of primary rat hepatocytes.

View Article and Find Full Text PDF

A novel microfluidics-based bilayer device with a discrete parenchymal chamber modeled upon hepatic organ architecture is described. The microfluidics network was designed using computational models to provide appropriate flow behavior based on physiological data from human microvasculature. Patterned silicon wafer molds were used to generate films with the vascular-based microfluidics network design and parenchymal chamber by soft lithography.

View Article and Find Full Text PDF

Fulminant hepatic failure (FHF) attributes to rising medical cost and accounts for many deaths each year in the United States. Currently, the only solution is organ transplantation. Due to increasing donor organ shortage, many in need of transplantation continue to remain on the waiting list.

View Article and Find Full Text PDF