Publications by authors named "Katherine Kovalick"

Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT).

View Article and Find Full Text PDF

Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems.

View Article and Find Full Text PDF

Photoreceptors (PRs) and retinal pigment epithelial (RPE) cells form a functional unit called the PR-RPE complex. The PR-RPE complex plays a critical role in maintaining retinal homeostasis and function, and the quantification of its structure and topographical arrangement across the macula are important for understanding the etiology, mechanisms, and progression of many retinal diseases. However, the three-dimensional cellular morphology of the PR-RPE complex in living human eyes has not been completely described due to limitations in imaging techniques.

View Article and Find Full Text PDF

Purpose: To apply adaptive optics-optical coherence tomography (AO-OCT) to quantify multiple sclerosis (MS)-induced changes in axonal bundles in the macular nerve fiber layer, ganglion cell somas, and macrophage-like cells at the vitreomacular interface.

Methods: We used AO-OCT imaging in a pilot study of MS participants (n = 10), including those without and with a history of optic neuritis (ON, n = 4), and healthy volunteers (HV, n = 9) to reveal pathologic changes to inner retinal cells and structures affected by MS.

Results: We found that nerve fiber layer axonal bundles had 38% lower volume in MS participants (1.

View Article and Find Full Text PDF