Background: Low-intensity transcranial focused ultrasound (tFUS) is a brain stimulation approach that holds promise for the treatment of brain-based disorders. Studies in humans have shown that tFUS can successfully modulate perfusion in focal sonication targets, including the amygdala; however, limited research has explored how tFUS impacts large-scale neural networks.
Objective: The aim of the current study was to address this gap and examine changes in resting-state connectivity between large-scale network nodes using a randomized, double-blind, within-subjects crossover study design.
Apical cell-cell junctions, including adherens junctions and tight junctions, adhere epithelial cells to one another and regulate selective permeability at both bicellular junctions and tricellular junctions (TCJs). Although several specialized proteins are known to localize at TCJs, it remains unclear how actomyosin-mediated tension transmission at TCJs contributes to the maintenance of junction integrity and barrier function at these sites. Here, utilizing the embryonic epithelium of gastrula-stage Xenopus laevis embryos, we define a mechanism by which the mechanosensitive protein Vinculin helps anchor the actomyosin network at TCJs, thus maintaining TCJ integrity and barrier function.
View Article and Find Full Text PDFCell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear.
View Article and Find Full Text PDFWhile it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport.
View Article and Find Full Text PDF