Poly(ADP)-ribose polymerase (PARP) is an abundant nuclear protein that is activated by DNA damage; once active, it modifies nuclear proteins through attachment of poly(ADP)-ribose units derived from β-nicotinamide adenine dinucleotide (NAD(+)). In mice, the deletion of PARP-1 attenuates tissue injury in a number of animal models of human disease, including streptozotocin-induced diabetes. Also, inflammatory cell signaling and inflammatory gene expression are attenuated in macrophages isolated from endotoxin-treated PARP-1-deficient mice.
View Article and Find Full Text PDFWhile there can be detrimental consequences of nitric oxide production at pathological concentrations, eukaryotic cells have evolved protective mechanisms to defend themselves against this damage. The unfolded-protein response (UPR), activated by misfolded proteins and oxidative stress, is one adaptive mechanism that is employed to protect cells from stress. Nitric oxide is a potent activator of AMP-activated protein kinase (AMPK), and AMPK participates in the cellular defense against nitric oxide-mediated damage in pancreatic β-cells.
View Article and Find Full Text PDFFor many cell types, including pancreatic β-cells, nitric oxide is a mediator of cell death; paradoxically, nitric oxide can also activate pathways that promote the repair of cellular damage. In this report, a role for FoxO1-dependent transcriptional activation and its regulation by SIRT1 in determining the cellular response to nitric oxide is provided. In response to nitric oxide, FoxO1 translocates from the cytoplasm to the nucleus and stimulates the expression of the DNA repair gene GADD45α, resulting in FoxO1-dependent DNA repair.
View Article and Find Full Text PDFPeptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival in vitro, rat islets were cultured in three different groups--(1) bare group: isolated rat islets cultured in a 12-well nontissue culture-treated plate; (2) insert group: isolated rat islets cultured in modified insert chambers; (3) nanomatrix group: isolated rat islets encapsulated within the PA nanomatrix gel and cultured in modified insert chambers. Over 14 days, both the bare and insert groups showed a marked decrease in insulin secretion, whereas the nanomatrix group maintained glucose-stimulated insulin secretion.
View Article and Find Full Text PDFDuring the initial autoimmune response in type 1 diabetes, islets are exposed to a damaging mix of pro-inflammatory molecules that stimulate the production of nitric oxide by beta-cells. Nitric oxide causes extensive but reversible cellular damage. In response to nitric oxide, the cell activates pathways for functional recovery and adaptation as well as pathways that direct beta-cell death.
View Article and Find Full Text PDFFor many cell types, including pancreatic β-cells, nitric oxide is a mediator of cell death; however, it is paradoxical that for a given cell type nitric oxide can induce both necrosis and apoptosis. This report tests the hypothesis that cell death mediated by nitric oxide shifts from an early necrotic to a late apoptotic event. Central to this transition is the ability of β-cells to respond and repair nitric oxide-mediated damage.
View Article and Find Full Text PDFProinflammatory cytokines induce nitric oxide-dependent DNA damage and ultimately beta-cell death. Not only does nitric oxide cause beta-cell damage, it also activates a functional repair process. In this study, the mechanisms activated by nitric oxide that facilitate the repair of damaged beta-cell DNA are examined.
View Article and Find Full Text PDFThe effect of Zn on p53-independent cell death was examined in IIC9 embryonic fibroblasts. Despite the fact that these cells are p53-minus, Zn-mediated death occurs via an apoptotic mechanism. Death is facilitated by the presence of the Zn ionophore, pyrithione, indicating that intracellular Zn initiates the death response.
View Article and Find Full Text PDF