Plant pathogens can decimate crops and render the local cultivation of a species unprofitable. In extreme cases this has caused famine and economic collapse. Timing is vital in treating crop diseases, and the use of computer vision for precise disease detection and timing of pesticide application is gaining popularity.
View Article and Find Full Text PDFMaf1 is a transcription factor that is conserved in sequence and structure between yeasts, animals and plants. Its principal molecular function is also well conserved, being to bind and repress RNA polymerase (pol) III, thereby inhibiting synthesis of tRNAs and other noncoding RNAs. Restrictions on tRNA production and hence protein synthesis can provide a mechanism to preserve resources under conditions that are suboptimal for growth.
View Article and Find Full Text PDFThe photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment.
View Article and Find Full Text PDFTraditional crops have historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over-reliant on a small number of internationally traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (particularly where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture.
View Article and Find Full Text PDFGall-inducing insects and their hosts present some of the most intricate plant-herbivore interactions. Oviposition on the host is often the first cue of future herbivory and events at this early time point can affect later life stages. Many gallers are devastating plant pests, yet little information regarding the plant-insect molecular interplay exists, particularly following egg deposition.
View Article and Find Full Text PDFCrop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens.
View Article and Find Full Text PDFSummary: Every year, a large number of novel algorithms are introduced to the scientific community for a myriad of applications, but using these across different research groups is often troublesome, due to suboptimal implementations and specific dependency requirements. This does not have to be the case, as public cloud computing services can easily house tractable implementations within self-contained dependency environments, making the methods easily accessible to a wider public. We have taken 14 popular methods, the majority related to expression data or promoter analysis, developed these up to a good implementation standard and housed the tools in isolated Docker containers which we integrated into the CyVerse Discovery Environment, making these easily usable for a wide community as part of the CyVerse UK project.
View Article and Find Full Text PDFGall-inducing insects are capable of exerting a high level of control over their hosts' cellular machinery to the extent that the plant's development, metabolism, chemistry, and physiology are all altered in favour of the insect. Many gallers are devastating pests in global agriculture and the limited understanding of their relationship with their hosts prevents the development of robust management strategies. Omics technologies are proving to be important tools in elucidating the mechanisms involved in the interaction as they facilitate analysis of plant hosts and insect effectors for which little or no prior knowledge exists.
View Article and Find Full Text PDFThe circadian clock, an internal time-keeping mechanism, allows plants to anticipate regular changes in the environment, such as light and dark, and biotic challenges such as pathogens and herbivores. Here, we demonstrate that the plant circadian clock influences susceptibility to the necrotrophic fungal pathogen, Botrytis cinerea. Arabidopsis plants show differential susceptibility to B.
View Article and Find Full Text PDFHow standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B.
View Article and Find Full Text PDFTranscriptional reprogramming plays a significant role in governing plant responses to pathogens. The underlying regulatory networks are complex and dynamic, responding to numerous input signals. Most network modelling studies to date have used large-scale expression data sets from public repositories but defence network models with predictive ability have also been inferred from single time series data sets, and sophisticated biological insights generated from focused experiments containing multiple network perturbations.
View Article and Find Full Text PDFPlant biology is rapidly entering an era where we have the ability to conduct intricate studies that investigate how a plant interacts with the entirety of its environment. This requires complex, large studies to measure how plant genotypes simultaneously interact with a diverse array of environmental stimuli. Successful interpretation of the results from these studies requires us to transition away from the traditional standard of conducting an array of pairwise t tests toward more general linear modeling structures, such as those provided by the extendable ANOVA framework.
View Article and Find Full Text PDFThe Arabidopsis constitutive induced resistance 1 (cir1) mutant displays salicylic acid (SA)-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4). We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network.
View Article and Find Full Text PDFDeciphering the networks that underpin complex biological processes using experimental data remains a significant, but promising, challenge, a task made all the harder by the added complexity of host-pathogen interactions. The aim of this article is to review the progress in understanding plant immunity made so far by applying network modeling algorithms and to show how this computational/mathematical strategy is facilitating a systems view of plant defense. We review the different types of network modeling that have been used, the data required, and the type of insight that such modeling can provide.
View Article and Find Full Text PDFMotivation: Identification of modules of co-regulated genes is a crucial first step towards dissecting the regulatory circuitry underlying biological processes. Co-regulated genes are likely to reveal themselves by showing tight co-expression, e.g.
View Article and Find Full Text PDFA model is presented describing the gene regulatory network surrounding three similar NAC transcription factors that have roles in Arabidopsis leaf senescence and stress responses. ANAC019, ANAC055 and ANAC072 belong to the same clade of NAC domain genes and have overlapping expression patterns. A combination of promoter DNA/protein interactions identified using yeast 1-hybrid analysis and modelling using gene expression time course data has been applied to predict the regulatory network upstream of these genes.
View Article and Find Full Text PDFBacterial wilt caused by Ralstonia solanacearum is a disease of widespread economic importance that affects numerous plant species, including Arabidopsis thaliana. We describe a pathosystem between A. thaliana and biovar 3 phylotype I strain BCCF402 of R.
View Article and Find Full Text PDFTranscriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea.
View Article and Find Full Text PDFThe PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression.
View Article and Find Full Text PDFMotivation: The generation of time series transcriptomic datasets collected under multiple experimental conditions has proven to be a powerful approach for disentangling complex biological processes, allowing for the reverse engineering of gene regulatory networks (GRNs). Most methods for reverse engineering GRNs from multiple datasets assume that each of the time series were generated from networks with identical topology. In this study, we outline a hierarchical, non-parametric Bayesian approach for reverse engineering GRNs using multiple time series that can be applied in a number of novel situations including: (i) where different, but overlapping sets of transcription factors are expected to bind in the different experimental conditions; that is, where switching events could potentially arise under the different treatments and (ii) for inference in evolutionary related species in which orthologous GRNs exist.
View Article and Find Full Text PDFBackground: Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection.
View Article and Find Full Text PDFPlants activate an array of defence responses following recognition of pathogenic organisms. This study attempted to characterize at a transcriptional level, the defence responses of Arabidopsis thaliana after infection with Botrytis cinerea using microarrays. Alteration in transcript levels following infection was investigated in time (temporal) and space (spatial).
View Article and Find Full Text PDFWe propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of gene regulatory networks from low-resolution microarray time series, where existence of nonlinear interactions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators and providing these with either an overall or gene-wise hierarchical structure.
View Article and Find Full Text PDFUnderstanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed.
View Article and Find Full Text PDF