Publications by authors named "Katherine Hollywood"

Introduction: Outside of case-control settings, ethnicity specific changes in the human metabolome are understudied especially in community dwelling, ageing men. Characterising serum for age and ethnicity specific features can enable tailored therapeutics research and improve our understanding of the interplay between age, ethnicity, and metabolism in global populations.

Objective: A metabolomics approach was adopted to profile serum metabolomes in middle-aged and elderly men of different ethnicities from the Northwest of England, UK.

View Article and Find Full Text PDF

Unlabelled: The application of liquid chromatography and mass spectrometry (MS) is a challenging area of research for structural identification of sophorolipids, owing to the large number of possible variations in structure and limited knowledge on the separation and fragmentation characteristics of the variants. The aims of this work was to provide a comprehensive analysis of the expected characteristics and fragmentation patterns of a wide range of sophorolipid biosurfactant congeners, providing a methodology and process alongside freely available data to inform and enable future research of commercial or novel sophorolipids. Samples of acidic and lactonic sophorolipid standards were tested using reverse-phase ultra-high performance liquid chromatography and identified using electrospray ionization MS.

View Article and Find Full Text PDF

Sebum is a biofluid excreted by sebaceous glands in the skin. In recent years sebum has been shown to contain endogenous metabolites diagnostic of disease, with remarkable results for Parkinson's Disease. Given that sebum sampling is facile and non-invasive, its potential for use in clinical biochemistry diagnostic assays should be explored including the parameters for standard operating procedures around collection, transport, and storage.

View Article and Find Full Text PDF

In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort.

View Article and Find Full Text PDF

To determine the performance of a sophorolipid biosurfactant production process, it is important to have accurate and specific analytical techniques in place. Among the most popular are the anthrone assay, gravimetric quantification (hexane:ethyl acetate extraction), and high-performance liquid chromatography (HPLC). The choice of analytical tool varies depending on cost, availability, and ease of use; however, these techniques have never been compared directly against one another.

View Article and Find Full Text PDF

Phenylpropenes are a class of natural products that are synthesised by a vast range of plant species and hold considerable promise in the flavour and fragrance industries. Many studies have been carried out to elucidate and characterise the enzymes responsible for the production of these volatile compounds. However, there is a scarcity of studies demonstrating the production of phenylpropenes in microbial cell factories.

View Article and Find Full Text PDF

Flavones and flavonols are important classes of flavonoids with nutraceutical and pharmacological value, and their production by fermentation with recombinant microorganisms promises to be a scalable and economically favorable alternative to extraction from plant sources. Flavones and flavonols have been produced recombinantly in a number of microorganisms, with typically being a preferred production host for these compounds due to higher yields and titers of precursor compounds, as well as generally improved ability to functionally express cytochrome P450 enzymes without requiring modification to improve their solubility. Recently, a rapid prototyping platform has been developed for high-value compounds in , and a number of gatekeeper (2)-flavanones, from which flavones and flavonols can be derived, have been produced to high titers in using this platform.

View Article and Find Full Text PDF

Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs).

View Article and Find Full Text PDF

The biological production of hydrogen is an appealing approach to mitigating the environmental problems caused by the diminishing supply of fossil fuels and the need for greener energy. is one of the best-characterized microorganisms capable of consuming glycerol-a waste product of the biodiesel industry-and producing H and ethanol. However, the natural capacity of to generate these compounds is insufficient for commercial or industrial purposes.

View Article and Find Full Text PDF

The initial growth rate of a yeast strain is a key parameter in the production of fermented beverages. Fast growth is linked with higher fermentative capacity and results in less slow and stuck fermentations unable to reach the expected final gravity. As concentrations of metabolites are in a constant state of flux, quantitative data on how growth rate affects the production of aromatic compounds becomes an important factor for brewers.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic is likely to represent an ongoing global health issue given the potential for new variants, vaccine escape and the low likelihood of eliminating all reservoirs of the disease. Whilst diagnostic testing has progressed at a fast pace, the metabolic drivers of outcomes-and whether markers can be found in different biofluids-are not well understood. Recent research has shown that serum metabolomics has potential for prognosis of disease progression.

View Article and Find Full Text PDF

Introduction: Glycerol is a byproduct from the biodiesel industry that can be biotransformed by Escherichia coli to high added-value products such as succinate under aerobic conditions. The main genetic engineering strategies to achieve this aim involve the mutation of succinate dehydrogenase (sdhA) gene and also those responsible for acetate synthesis including acetate kinase, phosphate acetyl transferase and pyruvate oxidase encoded by ackA, pta and pox genes respectively in the ΔsdhAΔack-ptaΔpox (M4) mutant. Other genetic manipulations to rewire the metabolism toward succinate consist on the activation of the glyoxylate shunt or blockage the pentose phosphate pathway (PPP) by deletion of isocitrate lyase repressor (iclR) or gluconate dehydrogenase (gnd) genes on M4-ΔiclR and M4-Δgnd mutants respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Plant-microbe interactions are vital for ecosystem health, with root exudates being key for communication between plants and soil microbes, yet current extraction methods often fail to reflect natural conditions.
  • A new hybrid method for collecting root exudates, involving a recovery period after washing roots, was tested to evaluate its effectiveness compared to existing methods, including potential damage to the roots.
  • Results indicated that allowing a recovery period of at least 3 days after washing roots improves the accuracy of exudate collection, yielding less biased data and a richer variety of metabolic compounds.
View Article and Find Full Text PDF

Metabolic engineering technologies have been employed with increasing success over the last three decades for the engineering and optimization of industrial host strains to competitively produce high-value chemical targets. To this end, continued reductions in the time taken from concept, to development, to scale-up are essential. Design-Build-Test-Learn pipelines that are able to rapidly deliver diverse chemical targets through iterative optimization of microbial production strains have been established.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that does not currently have a robust clinical diagnostic test. Nonmotor symptoms such as skin disorders have long since been associated with the disease, and more recently a characteristic odor emanating from the skin of people with Parkinson's has been identified. Here, dynamic head space (DHS) thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) is implemented to directly measure the volatile components of sebum on swabs sampled from people with Parkinson's-both drug naïve and those on PD medications ( = 100) and control subjects ( = 29).

View Article and Find Full Text PDF

Natural plant-based flavonoids have drawn significant attention as dietary supplements due to their potential health benefits, including anti-cancer, anti-oxidant and anti-asthmatic activities. Naringenin, pinocembrin, eriodictyol and homoeriodictyol are classified as (2)-flavanones, an important sub-group of naturally occurring flavonoids, with wide-reaching applications in human health and nutrition. These four compounds occupy a central position as branch point intermediates towards a broad spectrum of naturally occurring flavonoids.

View Article and Find Full Text PDF

There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine.

View Article and Find Full Text PDF

Synthetic biology utilizes the Design-Build-Test-Learn pipeline for the engineering of biological systems. Typically, this requires the construction of specifically designed, large and complex DNA assemblies. The availability of cheap DNA synthesis and automation enables high-throughput assembly approaches, which generates a heavy demand for DNA sequencing to verify correctly assembled constructs.

View Article and Find Full Text PDF

The goal of any topical formulation is efficient transdermal delivery of its active components. However, delivery of compounds can be problematic with penetration through tough layers of fibrotic dermal scar tissue. We propose a new approach combining high-performance liquid chromatography (HPLC) and Raman spectroscopy (RS) using a topical of unknown composition against a well-known antiscar topical (as control).

View Article and Find Full Text PDF

Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks.

View Article and Find Full Text PDF

Profiling skin microbiome and metabolome has been utilised to gain further insight into wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to analytically profile the dynamic wound tissue and headspace metabolome and sequence microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate their relationship to wound healing, using non-invasive quantitative devices. Metabolites were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and analysed using GCMS.

View Article and Find Full Text PDF
Article Synopsis
  • - In untargeted metabolomics, data from mass spectrometry is complex, leading to the need for automated tools to extract valuable biological insights, but linking experimental features to metabolites remains a major challenge.
  • - Accurate identification of metabolites is often limited to a few compounds, requiring scientists to rely on various indicators like isotope patterns and chromatographic retention times for confidence in annotations.
  • - The Integrated Probabilistic Annotation (IPA) tool provides a systematic way to automatically annotate metabolite profiles and assess the confidence of these annotations by integrating multiple data sources; the IPA package is available for free on GitHub.
View Article and Find Full Text PDF

Monoterpenoids are a structurally diverse group of natural products with applications as pharmaceuticals, flavourings, fragrances, pesticides, and biofuels. Recent advances in synthetic biology offer new routes to this chemical diversity through the introduction of heterologous isoprenoid production pathways into engineered microorganisms. Due to the nature of the branched reaction mechanism, monoterpene synthases often produce multiple products when expressed in monoterpenoid production platforms.

View Article and Find Full Text PDF

Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis.

View Article and Find Full Text PDF

High throughput screening (HTS) of molecular analytes is in high demand from and implemented in many areas of chemistry, medicine and industrial biotechnology including the discovery of biomarkers and the development of new chemical entities. Despite its prevalence, technical challenges remain in many of the new application areas of HTS which require rapid results from complex mixtures, for example in: screening biotransformations; targeted metabolomics; and in locating drugs and/or metabolites in biological matrices. Common to all of these are lengthy and costly sample preparation stages, involving recovery from cell cultures, extractions followed by low throughput LC-MS/MS methods or specific fluorescence measurements.

View Article and Find Full Text PDF