This paper describes a rapid, high-throughput flow-through membrane immunoassay (FMIA) platform. A nitrocellulose membrane was spotted in an array format with multiple capture and control reagents for each sample detection area, and assay steps were carried out by sequential aspiration of sample and reagents through each detection area using a 96-well vacuum manifold. The FMIA provides an alternate assay format with several advantages over ELISA.
View Article and Find Full Text PDFTranslation of sample preparation methods to point-of-care formats has remained a challenge. We present a plastic laminate microfluidic device for protein depletion from human plasma using ligand immobilized porous beads stored dry within a novel, pneumatically-driven mixer. The card design accelerated the protein depletion process from hours to minutes.
View Article and Find Full Text PDFAs part of an effort to create a point-of-care diagnostic system for the developing world, we present a microfluidic flow-through membrane immunoassay with on-card dry reagent storage. By preserving reagent function, the storage and reconstitution of anhydrous reagents enables the devices to remain viable in challenging, unregulated environmental conditions. The assay takes place on a disposable laminate card containing both a porous membrane patterned with capture molecules and a fibrous pad containing an anhydrous analyte label.
View Article and Find Full Text PDF