Background: Intestinal alkaline phosphatase (IAP) has been shown to help maintain intestinal homeostasis. Decreased expression of IAP has been linked with pediatric intestinal diseases associated with bacterial overgrowth and subsequent inflammation. We hypothesize that the absence of IAP leads to dysbiosis, with increased inflammation and permeability of the newborn intestine.
View Article and Find Full Text PDFBackground: Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP.
Methods: WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days.
Background Breast milk has a heterogeneous composition that differs between mothers and changes throughout the first weeks after birth. The proinflammatory cytokine IL-23 has a highly variable expression in human breast milk. We hypothesize that IL-23 found in human breast milk is biologically active and promotes epithelial barrier dysfunction.
View Article and Find Full Text PDFBackground: Intestinal alkaline phosphatase (IAP) activity is decreased in necrotizing enterocolitis (NEC), and IAP supplementation prevents NEC development. It is not known if IAP given after NEC onset can reverse the course of the disease. We hypothesized that enteral IAP given after NEC induction would not reverse intestinal injury.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is a complication of prematurity. The etiology is unknown, but is related to enteral feeding, ischemia, infection, and inflammation. Reactive oxygen species production, most notably superoxide, increases in NEC.
View Article and Find Full Text PDFBackground: Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown that enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC.
View Article and Find Full Text PDFSuperoxide dismutase (SOD) enzymes, including extracellular SOD (ecSOD), are important for scavenging superoxide radicals (O2(·-)) in the vasculature. This study investigated vascular control in rats [SS-Sod(3m1Mcwi) (ecSOD(E124D))] with a missense mutation that alters a single amino acid (E124D) of ecSOD that produces a malfunctioning protein in the salt-sensitive (Dahl SS) genetic background. We hypothesized that this mutation would exacerbate endothelial dysfunction due to elevated vascular O2(·-) levels in SS, even under normal salt (NS; 0.
View Article and Find Full Text PDFBackground: Elevated blood pressure, elevated angiotensin II (ANG II), and ANG II suppression with high salt (HS) diet all contribute to vascular dysfunction. This study investigated the interplay of HS diet and vascular function in a high renin model of hypertension.
Methods: Male Sprague-Dawley rats were subjected to 2 kidney-1 clip (2K1C) Goldblatt hypertension for 4 weeks and compared with sham-operated controls.
Purpose: To determine if intestinal alkaline phosphatase (IAP) decreases intestinal injury resulting from experimentally induced necrotizing enterocolitis (NEC). We hypothesized that IAP administration prevents the initial development of NEC related intestinal inflammation.
Methods: Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day 1 of life.
Introduction: Inflammation in the premature intestine is a key factor that leads to the development of necrotizing enterocolitis (NEC). Activation of nuclear factor kappa B (NF-κB) and subsequent inflammation increases the severity of NEC. The aim of this study was to investigate the early temporal expression of inflammatory markers and activation of NF-κB in a neonatal rat model of NEC.
View Article and Find Full Text PDFObesity increases plasma renin activity and angiotensin II levels, leading to vascular damage, elevated blood pressure, diabetes mellitus, and renal damage. Because genetic deletion of crucial parts of the renin-angiotensin system protect against obesity-related cardiovascular defects, we hypothesized that Dahl salt-sensitive (SS) rats, a model of chronically low plasma renin activity and angiotensin II levels, would be protected against vascular defects during diet-induced obesity compared with SS.13(BN) consomic rats showing normal renin-angiotensin system regulation.
View Article and Find Full Text PDFBackground: Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model.
Materials And Methods: Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3.
Am J Physiol Renal Physiol
December 2008
This study examined the effect of transfer of overlapping regions of chromosome 5 that includes (4A(+)) or excludes (4A(-)) the cytochrome P-450 4A (CYP4A) genes from the Lewis rat on the renal production of 20-hydroxyeicosatetraenoic acid (20-HETE) and the development of hypertension-induced renal disease in congenic strains of Dahl salt-sensitive (Dahl S) rats. The production of 20-HETE was higher in the outer medulla of 4A(+) than in Dahl S or 4A(-) rats. Mean arterial pressure (MAP) rose to 190 +/- 7 and 185 +/- 3 mmHg in Dahl S and 4A(-) rats fed a high-salt (HS) diet for 21 days but only to 150 +/- 5 mmHg in the 4A(+) strain.
View Article and Find Full Text PDFReductions in vascular density occur following acute ischemia-reperfusion (I/R) injury that may predispose the development of chronic kidney disease. The mechanisms mediating vascular loss are not clear but may relate to the lack of effective vascular repair responses. To determine the regulation of the VEGF/VEGFR pathway following I/R injury, male Sprague-Dawley rats were subjected to bilateral renal ischemia (45 min) and allowed to recover for 1, 3, 7, and 35 days.
View Article and Find Full Text PDFRecovery from ischemic acute renal failure (ARF) involves a well-described regenerative process; however, recovery from ARF also results in a predisposition to a progressive renal disease that is not well understood. This study sought to identify alterations in renal gene expression in postischemic, recovered animals that might play important roles in this progressive disorder. RNA isolated from sham-operated control rats or rats 35 days after recovery from bilateral ischemia-reperfusion (I/R) injury was compared using a cDNA microarray containing approximately 2,000 known rat genes.
View Article and Find Full Text PDFIschemic injury to the kidney results in blood vessel loss and predisposition to chronic renal disease. Angiostatin is a proteolytic cleavage product of plasminogen that inhibits angiogenesis, promotes apoptosis of endothelial cells, and disrupts capillary integrity. A combination of lysine-Sepharose enrichment followed by Western blotting was used to study the expression of angiostatin in response to the induction of ischemic renal injury.
View Article and Find Full Text PDF