Publications by authors named "Katherine Fitzgerald"

Background: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs.

View Article and Find Full Text PDF

To defend cells against viruses, the MAVS (mitochondrial antiviral signaling) adaptor protein initiates an antiviral signaling cascade from mitochondrial membranes. In this issue, Dixit et al. (2010) show that MAVS also localizes to the membranes of peroxisomes, where it rapidly induces expression of a subset of antiviral genes that curb viral replication until mitochondrial MAVS can induce a sustained antiviral response.

View Article and Find Full Text PDF

Background: The proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18 are central players in the pathogenesis of inflammatory bowel disease (IBD). In response to a variety of microbial components and crystalline substances, both cytokines are processed via the caspase-1-activating multiprotein complex, the NLRP3 inflammasome. Here, the role of the NLRP3 inflammasome in experimental colitis induced by dextran sodium sulfate (DSS) was examined.

View Article and Find Full Text PDF

The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli.

View Article and Find Full Text PDF

Chlamydia pneumoniae is a common respiratory pathogen associated with atypical pneumonia, and it has been suggested as a trigger or promoter of several chronic inflammatory conditions, such as asthma and atherosclerosis. The beta form of IL-1 (IL-1beta) is a proinflammatory cytokine released by many cell types and is an important mediator of inflammation during infection. IL-1beta production is a tightly controlled process that includes regulation at multiple levels and typically requires two distinct signals for activation and release.

View Article and Find Full Text PDF

Low m.w. hyaluronan (LMW HA) has been shown to elicit the expression of proinflammatory cytokines and chemokines in various cells in vitro.

View Article and Find Full Text PDF

Inflammasomes regulate the activity of caspase-1 and the maturation of interleukin 1beta (IL-1beta) and IL-18. AIM2 has been shown to bind DNA and engage the caspase-1-activating adaptor protein ASC to form a caspase-1-activating inflammasome. Using Aim2-deficient mice, we identify a central role for AIM2 in regulating caspase-1-dependent maturation of IL-1beta and IL-18, as well as pyroptosis, in response to synthetic double-stranded DNA.

View Article and Find Full Text PDF

Interferon regulatory factors (IRFs) are crucial for transcription during innate immune responses. We have previously shown that the tyrosine kinase c-Src enhances IRF-3-dependent transcription in response to viral double-stranded RNA. In this study, we show that c-Src has distinct roles in Toll-like receptor (TLR)-mediated activation of IRF-5 and IRF-3.

View Article and Find Full Text PDF

The inflammasome pathway functions to regulate caspase-1 activation in response to a broad range of stimuli. Caspase-1 activation is required for the maturation of the pivotal pro-inflammatory cytokines of the pro-IL-1beta family. In addition, caspase-1 activation leads to a certain type of cell death known as pyroptosis.

View Article and Find Full Text PDF

Human metapneumoviruses (HMPVs) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germ line-encoded pattern recognition receptors and activation of cytokine and type I IFN genes.

View Article and Find Full Text PDF

TLR2 plays a central role in the activation of innate immunity in response to Ft, the causative agent of tularemia. We reported previously that Ft LVS elicited strong, dose-dependent NF-kappaB reporter activity in TLR2-expressing human embryo kidney 293 T cells and that Ft LVS-induced murine macrophage proinflammatory cytokine gene and protein expression is TLR2-dependent. We demonstrated further that Ft can signal through TLR2 from within the phagosome and that phagosomal retention of Ft leads to greatly increased expression of a subset of proinflammatory genes.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) unfolded protein response (UPR) restores equilibrium to the ER, but prolonged expression of the UPR effector CHOP (GADD153) is cytotoxic. We found that CHOP expression induced by ER stress was suppressed by prior engagement of toll-like receptor (TLR) 3 or 4 through a TRIF-dependent pathway. TLR engagement did not suppress phosphorylation of PERK or eIF-2alpha, which are upstream of CHOP, but phospho-eIF-2alpha failed to promote translation of the CHOP activator ATF4.

View Article and Find Full Text PDF

Transcription factors of IRF family, IRF-3, IRF-5 and IRF-7 play a critical role in the innate antiviral response. In infected cells, IRF-3 and IRF-7 are activated by TBK-1 and IKK epsilon mediated phosphorylation, while the kinase, phosphorylating IRF-5 in the MyD88 signalling pathway has not yet been identified. We now show that IKK alpha phosphorylates IRF-5 and induces formation of IRF-5 dimers, which have been indicative of IRF-5 activation.

View Article and Find Full Text PDF

Germline-encoded pattern recognition receptors (PRRs) sense microbial or endogenous products released from damaged or dying cells and trigger innate immunity. In most cases, sensing of these signals is coupled to signal transduction pathways that lead to transcription of immune response genes that combat infection or lead to cell death. Members of the NOD-like receptor (NLR) family assemble into large multiprotein complexes, termed inflammasomes.

View Article and Find Full Text PDF

Endotoxin tolerance reprograms cell responses to LPS by repressing expression of proinflammatory cytokines, while not inhibiting production of anti-inflammatory cytokines and antimicrobial effectors. Molecular mechanisms of induction and maintenance of endotoxin tolerance are incompletely understood, particularly with regard to the impact of endotoxin tolerization on signalosome assembly, activation of adaptor-kinase modules, and expression of negative regulators of TLR signaling in human cells. In this study, we examined LPS-mediated activation of MyD88-dependent and Toll-IL-1R-containing adaptor inducing IFN-beta (TRIF)-dependent pathways emanating from TLR4 and expression of negative regulators of TLR signaling in control and endotoxin-tolerant human monocytes.

View Article and Find Full Text PDF

The innate immune system responds to unique molecular signatures that are widely conserved among microbes but that are not normally present in host cells. Compounds that stimulate innate immune pathways may be valuable in the design of novel adjuvants, vaccines, and other immunotherapeutics. The cyclic dinucleotide cyclic-di-guanosine monophosphate (c-di-GMP) is a recently appreciated second messenger that plays critical regulatory roles in many species of bacteria but is not produced by eukaryotic cells.

View Article and Find Full Text PDF

RNA is sensed by Toll-like receptor 7 (TLR7) and TLR8 or by the RNA helicases LGP2, Mda5 and RIG-I to trigger antiviral responses. Much less is known about sensors for DNA. Here we identify a novel DNA-sensing pathway involving RNA polymerase III and RIG-I.

View Article and Find Full Text PDF

Adenoviral vectors used in gene therapy induce inflammation, although the underlying mechanisms are currently unknown. In this issue of Immunity, Di Paolo et al. (2009) implicate interleukin-1 alpha (IL- 1 alpha) in virus-induced inflammation and identify the beta 3 integrin as the key receptor regulating IL-1 alpha activity.

View Article and Find Full Text PDF

While the recognition of microbial infection often occurs at the cell surface via Toll-like receptors, the cytosol of the cell is also under surveillance for microbial products that breach the cell membrane. An important outcome of cytosolic recognition is the induction of IFNalpha and IFNbeta, which are critical mediators of immunity against both bacteria and viruses. Like many intracellular pathogens, a significant fraction of the transcriptional response to Mycobacterium tuberculosis infection depends on these type I interferons, but the recognition pathways responsible remain elusive.

View Article and Find Full Text PDF

Antiviral immunity is triggered by immunorecognition of viral nucleic acids. The cytosolic helicase RIG-I is a key sensor of viral infections and is activated by RNA containing a triphosphate at the 5' end. The exact structure of RNA activating RIG-I remains controversial.

View Article and Find Full Text PDF

The IL-1 family cytokines are regulated on transcriptional and posttranscriptional levels. Pattern recognition and cytokine receptors control pro-IL-1beta transcription whereas inflammasomes regulate the proteolytic processing of pro-IL-1beta. The NLRP3 inflammasome, however, assembles in response to extracellular ATP, pore-forming toxins, or crystals only in the presence of proinflammatory stimuli.

View Article and Find Full Text PDF

The adapter protein MyD88 adapter-like (Mal), encoded by TIR-domain containing adapter protein (Tirap) (MIM 606252), is the most polymorphic of the five adapter proteins involved in Toll-like receptor signaling, harboring eight non-synonymous single nucleotide polymorphisms in its coding region. We screened reported mutations of Mal for activity in reporter assays to test the hypothesis that variants of Mal existed with altered signaling potential. A TIR domain variant, Mal D96N (rs8177400), was found to be inactive.

View Article and Find Full Text PDF

Detection of non-self RNA by TLRs within endosomes and by retinoic acid-inducible gene I (RIG-I)-like helicases in the cytosol is central to mammalian antiviral immunity. In this study, we used pathway-specific agonists and targeted delivery to address RNA immunorecognition in primary human immune cells. Within PBMC, plasmacytoid dendritic cells (pDC) and monocytes were found to be responsible for IFN-alpha production upon immunorecognition of RNA.

View Article and Find Full Text PDF

Candida albicans is an opportunistic fungal pathogen causing life-threatening mucosal and systemic infections in immunocompromised humans. Using a murine model of mucosal Candida infection, we investigated the role of the proinflammatory cytokine IL-1beta in host defense to Candida albicans. We find that the synthesis, processing, and release of IL-1beta in response to Candida are tightly controlled and first require transcriptional induction, followed by a second signal leading to caspase-1-mediated cleavage of the pro-IL-1beta cytokine.

View Article and Find Full Text PDF