The availability of genomic sequences of several Verticillium species triggered an explosion of genome-scale investigations of mechanisms fundamental to the Verticillium life cycle and disease process. Comparative genomics studies have revealed evolutionary mechanisms, such as hybridization and interchromosomal rearrangements, that have shaped these genomes. Functional analyses of a diverse group of genes encoding virulence factors indicate that successful host xylem colonization relies on specific Verticillium responses to various stresses, including nutrient deficiency and host defense-derived oxidative stress.
View Article and Find Full Text PDFBackground: The soilborne fungus, Verticillium dahliae, causes Verticillium wilt disease in plants. Verticillium wilt is difficult to control since V. dahliae is capable of persisting in the soil for 10 to 15 years as melanized microsclerotia, rendering crop rotation strategies for disease control ineffective.
View Article and Find Full Text PDFBackground: Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.
View Article and Find Full Text PDFThe vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity.
View Article and Find Full Text PDFThe colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V.
View Article and Find Full Text PDFThe vascular wilt fungus Verticillium dahliae produces persistent resting structures, known as microsclerotia, which are important for this plant pathogen's long-term survival. Previously, we identified a hydrophobin gene (VDH1) that is necessary for microsclerotial production. The current study of VDH1's expression, and its regulation, was undertaken to provide insight into the largely uncharacterized molecular mechanisms relevant to microsclerotial development.
View Article and Find Full Text PDFThe wilt fungus Verticillium dahliae Kleb. produces desiccation- and cold-tolerant resting structures, known as microsclerotia, which are the primary source of disease inoculum in the field. In an exploration of the molecular mechanisms involved in the development of these important structures, we have identified in V.
View Article and Find Full Text PDFVerticillium dahliae is an important soil-borne fungal pathogen that causes vascular wilt diseases in a large variety of important crop plants. Due to its persistence in the soil, control of Verticillium wilt relies heavily on soil fumigation. The global ban on methyl bromide, a highly effective soil fumigant, poses an urgent need to develop alternative control measures against Verticillium wilt; and these might be more forthcoming with a better understanding of the molecular and cellular mechanisms that underpin the pathogenicity of V.
View Article and Find Full Text PDFA gene encoding a trypsin protease was isolated from a tomato isolate of Verticillium dahliae. The gene, designated VTP1, contains two introns and is predicted to encode a protein of 256 amino acids. The gene is present in V.
View Article and Find Full Text PDF