The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600-800 Myr after the Big Bang, has been a matter of debate. Some models suggest that high ionizing emissivity and escape fractions (f) from quasars support their role in driving cosmic reionization. Others propose that the high f values from bright galaxies generate sufficient ionizing radiation to drive this process.
View Article and Find Full Text PDFEarly JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. ).
View Article and Find Full Text PDFDust grains absorb half of the radiation emitted by stars throughout the history of the universe, re-emitting this energy at infrared wavelengths. Polycyclic aromatic hydrocarbons (PAHs) are large organic molecules that trace millimetre-size dust grains and regulate the cooling of interstellar gas within galaxies. Observations of PAH features in very distant galaxies have been difficult owing to the limited sensitivity and wavelength coverage of previous infrared telescopes.
View Article and Find Full Text PDFStar formation in half of massive galaxies was quenched by the time the Universe was 3 billion years old. Very low amounts of molecular gas seem to be responsible for this, at least in some cases, although morphological gas stabilization, shock heating or activity associated with accretion onto a central supermassive black hole are invoked in other cases. Recent studies of quenching by gas depletion have been based on upper limits that are insufficiently sensitive to determine this robustly, or stacked emission with its problems of averaging.
View Article and Find Full Text PDFWe present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of =2.
View Article and Find Full Text PDF