Publications by authors named "Katherine E Gibson"

Article Synopsis
  • The cell cycle is essential for bacterial reproduction and varies based on the growth environment, showing different behaviors during free-living and symbiotic states.
  • Key regulators, particularly the DivK kinase CbrA, negatively influence CtrA activity and are crucial for symbiosis; genetic mutations can restore normal cell cycle progression.
  • The CckA hybrid histidine kinase, with both kinase and phosphatase functions, plays a significant role in regulating CtrA, highlighting important processes in the cell cycle and symbiotic differentiation of soil bacteria, which are vital for their agricultural relevance.
View Article and Find Full Text PDF

Unlabelled: CbrA is a DivJ/PleC-like histidine kinase of DivK that is required for cell cycle progression and symbiosis in the alphaproteobacterium Sinorhizobium meliloti. Loss of cbrA results in increased levels of CtrA as well as its phosphorylation. While many of the known Caulobacter crescentus regulators of CtrA phosphorylation and proteolysis are phylogenetically conserved within S.

View Article and Find Full Text PDF

Sinorhizobium meliloti is alternately capable of colonizing the soil as a free-living bacterium or establishing a chronic intracellular infection with its legume host for the purpose of nitrogen fixation. We previously identified the S. meliloti two-component sensor histidine kinase CbrA as playing an important role in regulating exopolysaccharide production, flagellar motility and symbiosis.

View Article and Find Full Text PDF

Rhizobial bacteria colonize legume roots for the purpose of biological nitrogen fixation. A complex series of events, coordinated by host and bacterial signal molecules, underlie the development of this symbiotic interaction. Rhizobia elicit de novo formation of a novel root organ within which they establish a chronic intracellular infection.

View Article and Find Full Text PDF

Sinorhizobium meliloti participates in a nitrogen-fixing symbiosis with legume plant host species of the genera Medicago, Melilotus, and Trigonella. We recently identified an S. meliloti two-component sensory histidine kinase, CbrA, which is absolutely required to establish a successful symbiosis with Medicago sativa (K.

View Article and Find Full Text PDF

Sinorhizobium meliloti produces an exopolysaccharide called succinoglycan that plays a critical role in promoting symbiosis with its host legume, alfalfa (Medicago sativa). We performed a transposon mutagenesis and screened for mutants with altered succinoglycan production and a defect in symbiosis. In this way, we identified a putative two-component histidine kinase associated with a PAS sensory domain, now designated CbrA (calcofluor-bright regulator A).

View Article and Find Full Text PDF