The transcriptome of seedlings was analyzed from experiments performed on the International Space Station to study the interacting effects of light and gravity on plant tropisms (project named TROPI-2; Kiss et al. 2012). Seeds of Arabidopsis were germinated in space, and seedlings were then grown in the European Modular Cultivation System for 4 days at ~1g followed by exposure to a range of gravitational accelerations (from microgravity to 1g) and two light treatments (blue light with or without a 1 h pretreatment with red).
View Article and Find Full Text PDFPremise Of The Study: Characterization of phototropism and gravitropism has been through gene expression studies, assessment of curvature response, and protein expression experiments. To our knowledge, the current study is the first to determine how the metabolome, the complete set of small-molecule metabolites within a plant, is impacted during these tropisms.
Methods: We have determined the metabolic profile of plants during gravitropism and phototropism.
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments.
View Article and Find Full Text PDFIn plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010.
View Article and Find Full Text PDFThe aim of this study was to investigate phototropism in plants grown in microgravity conditions without the complications of a 1-g environment. Experiments performed on the International Space Station (ISS) were used to explore the mechanisms of both blue-light- and red-light-induced phototropism in plants. This project utilized the European Modular Cultivation System (EMCS), which has environmental controls for plant growth as well as centrifuges for gravity treatments used as a 1-g control.
View Article and Find Full Text PDF