Tendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined.
View Article and Find Full Text PDFCurr Rheumatol Rep
February 2021
Purpose Of Review: This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis.
Recent Findings: Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro.
Despite the requirement for -lineage (Scx) cells during tendon development, the function of Scx cells during adult tendon repair, post-natal growth, and adult homeostasis have not been defined. Therefore, we inducibly depleted Scx cells (ScxLin) prior to tendon injury and repair surgery and hypothesized that ScxLin mice would exhibit functionally deficient healing compared to wild-type littermates. Surprisingly, depletion of Scx cells resulted in increased biomechanical properties without impairments in gliding function at 28 days post-repair, indicative of regeneration.
View Article and Find Full Text PDFAlthough inflammation is necessary during the early phases of tissue repair, persistent inflammation contributes to fibrosis. Acute tendon injuries often heal through a fibrotic mechanism, which impedes regeneration and functional recovery. Because inflammation mediated by nuclear factor κB (NF-κB) signaling is implicated in this process, we examined the spatial, temporal, and cell type-specific activation profile of canonical NF-κB signaling during tendon healing.
View Article and Find Full Text PDFThe use of tamoxifen-inducible models of Cre recombinase in the tendon field is rapidly expanding, resulting in an enhanced understanding of tendon homeostasis and healing. However, the effects of tamoxifen on the tendon are not well-defined, which is particularly problematic given that tamoxifen can have both profibrotic and antifibrotic effects in a tissue-specific manner. Therefore, in the present study, we examined the effects of tamoxifen on tendon homeostasis and healing in male and female C57Bl/6J mice.
View Article and Find Full Text PDFBackground: Surgeons administer care in an increasingly complex clinical environment. Time constraints put strain on individual clinicians and the multidisciplinary team, increasing the risk of human errors. The World Health Organization surgical checklist has shown to mitigate this risk perioperatively.
View Article and Find Full Text PDFFlexor tendon injuries heal with excessive scar tissue that limits range of motion and increases incidence of re-rupture. The molecular mechanisms that govern tendon healing are not well defined. Both the canonical nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways have been implicated in tendon healing.
View Article and Find Full Text PDFIdentification of pro-regenerative approaches to improve tendon healing is critically important as the fibrotic healing response impairs physical function. In the present study we tested the hypothesis that S100a4 haploinsufficiency or inhibition of S100a4 signaling improves tendon function following acute injury and surgical repair in a murine model. We demonstrate that S100a4 drives fibrotic tendon healing primarily through a cell non-autonomous process, with S100a4 haploinsufficiency promoting regenerative tendon healing.
View Article and Find Full Text PDFDuring tendon healing, it is postulated that tendon cells drive tissue regeneration, whereas extrinsic cells drive pathologic scar formation. Tendon cells are frequently described as a homogenous, fibroblast population that is positive for the marker Scleraxis (Scx). It is controversial whether tendon cells localize within the forming scar tissue during adult tendon healing.
View Article and Find Full Text PDFTendon injuries are common and can dramatically impair patient mobility and productivity, resulting in a significant socioeconomic burden and reduced quality of life. Because the tendon healing process results in the formation of a fibrotic scar, injured tendons never regain the mechanical strength of the uninjured tendon, leading to frequent reinjury. Many tendons are also prone to the development of peritendinous adhesions and excess scar formation, which further reduce tendon function and lead to chronic complications.
View Article and Find Full Text PDFTendon injuries heal via scar tissue rather than regeneration. This healing response forms adhesions between the flexor tendons in the hand and surrounding tissues, resulting in impaired range of motion and hand function. Mechanistically, inflammation has been strongly linked to adhesion formation, and Prostaglandin E2 (PGE2) is associated with both adhesion formation and tendinopathy.
View Article and Find Full Text PDFDepression is a leading cause of disability [World Health Organization (WHO), 2001] with economic costs exceeding 63 billion dollars per year in the US [U.S. Department of Health and Human Services (DHHS), 1999].
View Article and Find Full Text PDF