Purpose: To assess the ability of the Annalise Enterprise CXR Triage Trauma (Annalise AI Pty Ltd, Sydney, NSW, Australia) artificial intelligence model to identify vertebral compression fractures on chest radiographs and its potential to address undiagnosed osteoporosis and its treatment.
Materials And Methods: This retrospective study used a consecutive cohort of 596 chest radiographs from four US hospitals between 2015 and 2021. Each radiograph included both frontal (anteroposterior or posteroanterior) and lateral projections.
Objective: AI adoption requires perceived value by end-users. AI-enabled opportunistic CT screening (OS) detects incidental clinically meaningful imaging risk markers on CT for potential preventative health benefit. This investigation assesses radiologists' perspectives on AI and OS.
View Article and Find Full Text PDFBackground: Clinical adoption of AI applications requires stakeholders see value in their use. AI-enabled opportunistic-CT-screening (OS) capitalizes on incidentally-detected findings within CTs for potential health benefit. This study evaluates primary care providers' (PCP) perspectives on OS.
View Article and Find Full Text PDFIn recent years, the role of Artificial Intelligence (AI) in medical imaging has become increasingly prominent, with the majority of AI applications approved by the FDA being in imaging and radiology in 2023. The surge in AI model development to tackle clinical challenges underscores the necessity for preparing high-quality medical imaging data. Proper data preparation is crucial as it fosters the creation of standardized and reproducible AI models while minimizing biases.
View Article and Find Full Text PDFThe Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data involves dealing with issues of patient privacy and data security.
View Article and Find Full Text PDFRationale And Objectives: Innovation is a crucial skill for physicians and researchers, yet traditional medical education does not provide instruction or experience to cultivate an innovative mindset. This study evaluates the effectiveness of a novel course implemented in an academic radiology department training program over a 5-year period designed to educate future radiologists on the fundamentals of medical innovation.
Materials And Methods: A pre- and post-course survey and examination were administered to residents who participated in the innovation course (MESH Core) from 2018 to 2022.
J Med Imaging (Bellingham)
November 2023
Picture archiving and communication systems (PACS) that digitally acquire, archive, transmit, and display medical images ultimately enabled the transition from an analog film-based operation to a digital workflow revolutionizing radiology. This article briefly traces early generation systems to present-day PACS, noting challenges along with key technological advances and benefits. Thoughts for future PACS evolution are discussed including the promise of integration of artificial intelligence applications.
View Article and Find Full Text PDFPurpose: To develop a deep learning model to distinguish rheumatoid arthritis (RA) from osteoarthritis (OA) using hand radiographs and to evaluate the effects of changing pretraining and training parameters on model performance.
Materials And Methods: A convolutional neural network was retrospectively trained on 9714 hand radiograph exams from 8387 patients obtained from 2017 to 2021 at seven hospitals within an integrated healthcare network. Performance was assessed using an independent test set of 250 exams from 146 patients.
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61-66% (specificity 90-92%) for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI (r > 0.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
February 2022
To commemorate the SPIE Medical Imaging 50th anniversary, this article provides a brief review of the Picture Archiving and Communication Systems (PACS) and Informatics conferences. Important topics and advances, contributing researchers from both academia and industry, and key papers are noted.
View Article and Find Full Text PDFBackground Adrenal masses are common, but radiology reporting and recommendations for management can be variable. Purpose To create a machine learning algorithm to segment adrenal glands on contrast-enhanced CT images and classify glands as normal or mass-containing and to assess algorithm performance. Materials and Methods This retrospective study included two groups of contrast-enhanced abdominal CT examinations (development data set and secondary test set).
View Article and Find Full Text PDFCT-based body composition (BC) measurements have historically been too resource intensive to analyze for widespread use and have lacked robust comparison with traditional weight metrics for predicting cardiovascular risk. The aim of this study was to determine whether BC measurements obtained from routine CT scans by use of a fully automated deep learning algorithm could predict subsequent cardiovascular events independently from weight, BMI, and additional cardiovascular risk factors. This retrospective study included 9752 outpatients (5519 women and 4233 men; mean age, 53.
View Article and Find Full Text PDFObjective: This study aimed is to: (1) extend the Integrating the Biology and the Bedside (i2b2) data and application models to include medical imaging appropriate use criteria, enabling it to serve as a platform to monitor local impact of the Protecting Access to Medicare Act's (PAMA) imaging clinical decision support (CDS) requirements, and (2) validate the i2b2 extension using data from the Medicare Imaging Demonstration (MID) CDS implementation.
Materials And Methods: This study provided a reference implementation and assessed its validity and reliability using data from the MID, the federal government's predecessor to PAMA's imaging CDS program. The Star Schema was extended to describe the interactions of imaging ordering providers with the CDS.
A standardized objective evaluation method is needed to compare machine learning (ML) algorithms as these tools become available for clinical use. Therefore, we designed, built, and tested an evaluation pipeline with the goal of normalizing performance measurement of independently developed algorithms, using a common test dataset of our clinical imaging. Three vendor applications for detecting solid, part-solid, and groundglass lung nodules in chest CT examinations were assessed in this retrospective study using our data-preprocessing and algorithm assessment chain.
View Article and Find Full Text PDFObjective: Cancer patients with spinal metastases may undergo surgery without clear assessments of prognosis, thereby impacting the optimal palliative strategy. Because the morbidity of surgery may adversely impact recovery and initiation of adjuvant therapies, evaluation of risk factors associated with mortality risk and complications is critical. Evaluation of body composition of cancer patients as a surrogate for frailty is an emerging area of study for improving preoperative risk stratification.
View Article and Find Full Text PDFBody composition on chest CT scans encompasses a set of important imaging biomarkers. This study developed and validated a fully automated analysis pipeline for multi-vertebral level assessment of muscle and adipose tissue on routine chest CT scans. This study retrospectively trained two convolutional neural networks on 629 chest CT scans from 629 patients (55% women; mean age, 67 years ± 10 [standard deviation]) obtained between 2014 and 2017 prior to lobectomy for primary lung cancer at three institutions.
View Article and Find Full Text PDFStroke is a leading cause of death and disability. The ability to quickly identify the presence of acute infarct and quantify the volume on magnetic resonance imaging (MRI) has important treatment implications. We developed a machine learning model that used the apparent diffusion coefficient and diffusion weighted imaging series.
View Article and Find Full Text PDFArtificial intelligence (AI) tools are rapidly being developed for radiology and other clinical areas. These tools have the potential to dramatically change clinical practice; however, for these tools to be usable and function as intended, they must be integrated into existing radiology systems. In a collaborative effort between the Radiological Society of North America, radiologists, and imaging-focused vendors, the Imaging AI in Practice (IAIP) demonstrations were developed to show how AI tools can generate, consume, and present results throughout the radiology workflow in a simulated clinical environment.
View Article and Find Full Text PDFWith vast interest in machine learning applications, more investigators are proposing to assemble large datasets for machine learning applications. We aim to delineate multiple possible roadblocks to exam retrieval that may present themselves and lead to significant time delays. This HIPAA-compliant, institutional review board-approved, retrospective clinical study required identification and retrieval of all outpatient and emergency patients undergoing abdominal and pelvic computed tomography (CT) at three affiliated hospitals in the year 2012.
View Article and Find Full Text PDFPurpose: To develop a deep learning model for detecting brain abnormalities on MR images.
Materials And Methods: In this retrospective study, a deep learning approach using T2-weighted fluid-attenuated inversion recovery images was developed to classify brain MRI findings as "likely normal" or "likely abnormal." A convolutional neural network model was trained on a large, heterogeneous dataset collected from two different continents and covering a broad panel of pathologic conditions, including neoplasms, hemorrhages, infarcts, and others.
Artificial or augmented intelligence, machine learning, and deep learning will be an increasingly important part of clinical practice for the next generation of radiologists. It is therefore critical that radiology residents develop a practical understanding of deep learning in medical imaging. Certain aspects of deep learning are not intuitive and may be better understood through hands-on experience; however, the technical requirements for setting up a programming and computing environment for deep learning can pose a high barrier to entry for individuals with limited experience in computer programming and limited access to GPU-accelerated computing.
View Article and Find Full Text PDF