Publications by authors named "Katherine A Webb"

Low resting inspiratory capacity (IC) and low maximal inspiratory pressure (MIP) have previously been linked to exertional dyspnea, exercise limitation, and poor survival in chronic obstructive pulmonary disease (COPD). The interaction and relative contributions of these two related variables to important clinical outcomes are unknown. The objective of the current study was to examine the interaction between resting IC and MIP (both % predicted), exertional dyspnea, exercise capacity, and long-term survival in patients with COPD.

View Article and Find Full Text PDF

Introduction: Evaluation of the intensity and quality of activity-related dyspnea is potentially useful in people with chronic obstructive pulmonary disease (COPD). The present study sought to examine associations between qualitative dyspnea descriptors, dyspnea intensity ratings, dynamic respiratory mechanics, and exercise capacity during cardiopulmonary exercise testing (CPET) in COPD and healthy controls.

Methods: In this cross-sectional study, 261 patients with mild-to-very severe COPD (forced expiratory volume in 1 s, 62 ± 25%pred) and 94 age-matched controls (forced expiratory volume in 1 s, 114 ± 14%pred) completed an incremental cycle CPET to determine peak oxygen uptake (V˙O2peak).

View Article and Find Full Text PDF

The mechanisms linking reduced diffusing capacity of the lung for carbon monoxide (Dl) to dyspnea and exercise intolerance across the chronic obstructive pulmonary disease (COPD) continuum are poorly understood. COPD progression generally involves both Dl decline and worsening respiratory mechanics, and their relative contribution to dyspnea has not been determined. In a retrospective analysis of 300 COPD patients who completed symptom-limited incremental cardiopulmonary exercise tests, we tested the association between peak oxygen-uptake (V̇o), Dl, and other resting physiological measures.

View Article and Find Full Text PDF

This randomized, double-blind, crossover study aimed to determine if acute treatment with inhaled bronchodilators, by improving regional lung hyperinflation and ventilation distribution, would reduce dead space-to-tidal volume ratio (V/V); thus contributing to improved exertional dyspnea in COPD. Twenty COPD patients (FEV = 50 ± 15% predicted; mean ± SD) performed pulmonary function tests and symptom-limited constant-work rate exercise at 75% peak-work rate (with arterialized capillary blood gases) after nebulized bronchodilator (BD; ipratropium 0.5mg + salbutamol 2.

View Article and Find Full Text PDF

Among patients with chronic obstructive pulmonary disease (COPD), those with the lowest maximal inspiratory pressures experience greater breathing discomfort (dyspnea) during exercise. In such individuals, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. Therefore, we aimed to identify physiological mechanisms of improvement in dyspnea and exercise endurance following inspiratory muscle training (IMT) in patients with COPD and low maximal inspiratory pressure (Pi).

View Article and Find Full Text PDF

Background: Patients with chronic obstructive pulmonary disease (COPD) can be classified into groups A/C or B/D based on symptom intensity. Different threshold values for symptom questionnaires can result in misclassification and, in turn, different treatment recommendations. The primary aim was to find the best fitting cut-points for Global initiative for chronic Obstructive Lung Disease (GOLD) symptom measures, with an modified Medical Research Council dyspnea grade of 2 or higher as point of reference.

View Article and Find Full Text PDF

This randomized, double-blind, crossover study examined the physiological rationale for using a dual long-acting bronchodilator (umeclidinium/vilanterol (UME/VIL)) versus its muscarinic-antagonist component (UME) as treatment for dyspnea and exercise intolerance in moderate COPD. After each 4-week treatment period, subjects performed pulmonary function and symptom-limited constant-work rate cycling tests with diaphragm electromyogram (EMGdi), esophageal (Pes), gastric (Pga) and transdiaphragmatic (Pdi) pressure measurements. Fourteen subjects completed the study.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) - an inflammatory disease of the airways, alveoli and lung microvasculature - is a leading cause of death worldwide. Smokers with milder airway obstruction constitute the majority of patients with this disease. Many studies have shown increased morbidity, activity-related dyspnea, exercise intolerance and mortality in such patients, compared with age-matched healthy populations.

View Article and Find Full Text PDF

Low inspiratory capacity (IC), chronic dyspnea, and reduced exercise capacity are inextricably linked and are independent predictors of increased mortality in chronic obstructive pulmonary disease. It is no surprise, therefore, that a major goal of management is to improve IC by reducing lung hyperinflation to improve respiratory symptoms and health-related quality of life. The negative effects of lung hyperinflation on respiratory muscle and cardiocirculatory function during exercise are now well established.

View Article and Find Full Text PDF

Smokers with minor spirometric abnormalities can experience persistent activity-related dyspnea and exercise intolerance. Additional resting tests can expose heterogeneous physiological abnormalities, but their relevance and association with clinical outcomes remain uncertain. Subjects included sixty-two smokers (≥20 pack-years), with cough and/or dyspnea and minor airway obstruction [forced expiratory volume in one-second (FEV) ≥80% predicted and >5th percentile lower limit of normal (LLN) (i.

View Article and Find Full Text PDF

Activity-related dyspnoea is often the most distressing symptom experienced by patients with chronic obstructive pulmonary disease (COPD) and can persist despite comprehensive medical management. It is now clear that dyspnoea during physical activity occurs across the spectrum of disease severity, even in those with mild airway obstruction. Our understanding of the nature and source of dyspnoea is incomplete, but current aetiological concepts emphasise the importance of increased central neural drive to breathe in the setting of a reduced ability of the respiratory system to appropriately respond.

View Article and Find Full Text PDF

Dyspnoea and activity limitation can occur in smokers who do not meet spirometric criteria for chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are unknown.Detailed pulmonary function tests and sensory-mechanical relationships during incremental exercise with respiratory pressure measurements and diaphragmatic electromyography (EMGdi) were compared in 20 smokers without spirometric COPD and 20 age-matched healthy controls.Smokers (mean±sd post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity 75±4%, mean±sd FEV1 104±14% predicted) had greater activity-related dyspnoea, poorer health status and lower physical activity than controls.

View Article and Find Full Text PDF

Introduction: Activity-related breathlessness is often the dominant symptom in patients with chronic obstructive pulmonary disease (COPD) and usually persists despite optimal medical therapy. Currently, our inability to meaningfully alter the pathophysiology of the underlying disease means that we must focus our attention on relieving this distressing symptom so as to improve exercise tolerance and quality of life.

Areas Covered: The current review examines the neurobiology of breathlessness and constructs a solid physiological rationale for amelioration of this distressing symptom.

View Article and Find Full Text PDF

Severity of resting functional impairment only partially predicts the increased risk of death in chronic obstructive pulmonary disease (COPD). Increased ventilation during exercise is associated with markers of disease progression and poor prognosis, including emphysema extension and pulmonary vascular impairment. Whether excess exercise ventilation would add to resting lung function in predicting mortality in COPD, however, is currently unknown.

View Article and Find Full Text PDF

Context: Breast cancer survivors often experience activity-related dyspnea and exercise intolerance, but the underlying mechanisms remain unknown.

Objectives: We evaluated physiological contributors to reduced peak oxygen uptake (VO2), with particular attention to the role of respiratory impairment.

Methods: We compared symptom assessments, respiratory and peripheral muscle strength, pulmonary function, and ventilatory responses to symptom-limited incremental treadmill exercise in 29 women who had survived breast cancer and 29 age-matched healthy controls.

View Article and Find Full Text PDF

Rationale: The mechanisms underlying dyspnea in interstitial lung disease (ILD) and chronic obstructive pulmonary disease (COPD) are unknown.

Objectives: To examine whether the relationship between inspiratory neural drive to the diaphragm and exertional dyspnea intensity is different in ILD and COPD, given the marked differences in static respiratory mechanics between these conditions.

Methods: We compared sensory-mechanical relationships in patients with ILD, patients with COPD, and healthy control subjects (n = 16 each) during incremental cycle exercise with diaphragmatic electromyography (EMGdi) and respiratory pressure measurements.

View Article and Find Full Text PDF

Rationale: Several studies in mild chronic obstructive pulmonary disease (COPD) have shown a higher than normal ventilatory equivalent for carbon dioxide ([Formula: see text]e/[Formula: see text]co2) during exercise. Our objective was to examine pulmonary gas exchange abnormalities and the mechanisms of high [Formula: see text]e/[Formula: see text]co2 in mild COPD and its impact on dyspnea and exercise intolerance.

Methods: Twenty-two subjects (11 patients with GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade 1B COPD, 11 age-matched healthy control subjects) undertook physiological testing and a symptom-limited incremental cycle exercise test with arterial blood gas collection.

View Article and Find Full Text PDF

To examine the effect of age-related respiratory function impairment on exertional dyspnea, we compared ventilatory and perceptual responses to incremental exercise under control (CTRL) and added dead space (DS) loading conditions in healthy fit older (55-79 years) and younger (20-39 years) men. Older individuals had higher ventilatory equivalents for CO2 throughout exercise (p<0.05) suggesting greater ventilatory inefficiency but operating lung volumes were similar compared to younger individuals.

View Article and Find Full Text PDF

Background: Smokers with persistent cough and sputum production (chronic bronchitis [CB]) represent a distinct clinical phenotype, consistently linked to negative clinical outcomes. However, the mechanistic link between physiologic impairment, dyspnea, and exercise intolerance in CB has not been studied, particularly in those with mild airway obstruction. We, therefore, compared physiologic abnormalities during rest and exercise in CB to those in patients without symptoms of mucus hypersecretion (non-CB) but with similar mild airway obstruction.

View Article and Find Full Text PDF

In patients with combined obesity and chronic obstructive pulmonary disease (COPD), dyspnea intensity at matched work rates during weight-supported cycling and weight-bearing walking is similar, despite consistent metabolic differences between test modalities. The present study examined the influence of differences in activity of the diaphragm and abdominal muscles during cycling and walking on intensity and quality of dyspnea at matched ventilation in obese patients with COPD. We compared respiratory muscle activity patterns and dyspnea ratings during incremental cycle and treadmill exercise tests, where work rate was matched, in 12 obese (body mass index 36.

View Article and Find Full Text PDF

The difference between total lung capacity (TLC) by body plethysmography and alveolar volume (VA) from the single-breath lung diffusing capacity measurement provides an index of ventilation distribution inequalities in COPD. The relevance of these abnormalities to dyspnea and exercise intolerance across the continuum of disease severity remains unknown. Two-hundred and seventy-six COPD patients distributed across GOLD grades 1 to 4 and 67 healthy controls were evaluated.

View Article and Find Full Text PDF

Lung hyperinflation is highly prevalent in patients with chronic obstructive pulmonary disease and occurs across the continuum of the disease. A growing body of evidence suggests that lung hyperinflation contributes to dyspnea and activity limitation in chronic obstructive pulmonary disease and is an important independent risk factor for mortality. In this review, we will summarize the recent literature on pathogenesis and clinical implications of lung hyperinflation.

View Article and Find Full Text PDF

The purpose of this study was to determine if a dissociation existed between respiratory drive, as estimated by diaphragmatic electromyography (EMGdi), and its pressure-generating capacity during exercise in mild chronic obstructive pulmonary disease (COPD) and whether this, if present, had negative sensory consequences. Subjects meeting spirometric criteria for mild COPD (n=16) and age and sex-matched controls (n=16) underwent detailed pulmonary function testing and a symptom limited cycle test while detailed ventilatory, sensory and respiratory mechanical responses were measured. Compared with controls, subjects with mild COPD had greater ventilatory requirements throughout submaximal exercise.

View Article and Find Full Text PDF