Social isolation affects the brain and behavior in a variety of animals, including humans. Studies in traditional laboratory rodents, including mice and rats, have supported the idea that short-term social isolation promotes affiliative social behaviors, while long-term isolation promotes anti-social behaviors, including increased aggression. Whether the effects of isolation on the social behaviors of mice and rats generalize to other rodents remains understudied.
View Article and Find Full Text PDFMouse pups produce. ultrasonic vocalizations (USVs) in response to isolation from the nest (i.e.
View Article and Find Full Text PDFHumans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter.
View Article and Find Full Text PDFSongbirds use auditory feedback to learn and maintain their songs, but how feedback interacts with vocal motor circuitry remains unclear. A potential site for this interaction is the song premotor nucleus HVC, which receives auditory input and contains neurons (HVCX cells) that innervate an anterior forebrain pathway (AFP) important to feedback-dependent vocal plasticity. Although the singing-related output of HVCX cells is unaltered by distorted auditory feedback (DAF), deafening gradually weakens synapses on HVCX cells, raising the possibility that they integrate feedback only at subthreshold levels during singing.
View Article and Find Full Text PDFHearing loss prevents vocal learning and causes learned vocalizations to deteriorate, but how vocalization-related auditory feedback acts on neural circuits that control vocalization remains poorly understood. We deafened adult zebra finches, which rely on auditory feedback to maintain their learned songs, to test the hypothesis that deafening modifies synapses on neurons in a sensorimotor nucleus important to song production. Longitudinal in vivo imaging revealed that deafening selectively decreased the size and stability of dendritic spines on neurons that provide input to a striatothalamic pathway important to audition-dependent vocal plasticity, and changes in spine size preceded and predicted subsequent vocal degradation.
View Article and Find Full Text PDFBehavioural learning depends on the brain's capacity to respond to instructive experience and is often enhanced during a juvenile sensitive period. How instructive experience acts on the juvenile brain to trigger behavioural learning remains unknown. In vitro studies show that forms of synaptic strengthening thought to underlie learning are accompanied by an increase in the stability, number and size of dendritic spines, which are the major sites of excitatory synaptic transmission in the vertebrate brain.
View Article and Find Full Text PDF