Nontypeable Haemophilus influenzae (NTHi) initiates infection by colonizing the upper respiratory tract and is a common cause of localized respiratory tract disease. Previous work has established that the NTHi HMW1 and HMW2 proteins are potent adhesins that mediate efficient in vitro adherence to cultured human respiratory epithelial cells. In this study, we used a rhesus macaque model to assess the contributions of HMW1 and HMW2 to in vivo colonization.
View Article and Find Full Text PDFUnlabelled: Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues.
View Article and Find Full Text PDFUnlabelled: The two-partner secretion (TPS) pathway in Gram-negative bacteria consists of a TpsA exoprotein and a cognate TpsB outer membrane pore-forming translocator protein. Previous work has demonstrated that the TpsA protein contains an N-terminal TPS domain that plays an important role in targeting the TpsB protein and is required for secretion. The nontypeable Haemophilus influenzae HMW1 and HMW2 adhesins are homologous proteins that are prototype TpsA proteins and are secreted by the HMW1B and HMW2B TpsB proteins.
View Article and Find Full Text PDFThe plague bacillus Yersinia pestis can achieve transmission by biofilm blockage of the foregut proventriculus of its flea vector. Hfq is revealed to be essential for biofilm blockage formation and acquisition and fitness of Y. pestis during flea gut infection, consistent with posttranscriptional regulatory mechanisms in plague transmission.
View Article and Find Full Text PDF