Background: Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance and .
View Article and Find Full Text PDFCyclin-dependent kinases (CDKs) play critical roles in cell cycle progression and gene expression regulation. In human cancer, transcription-associated CDKs can activate oncogenic gene expression programs, whereas cell cycle-regulatory CDKs mainly induce uncontrolled proliferation. Cyclin-dependent kinase 12 (CDK12) belongs to the CDK family of serine/threonine kinases and has been recently found to have multiple roles in gene expression regulation and tumorigenesis.
View Article and Find Full Text PDFThe RNA polymerase II (RNAPII) C-terminal domain kinase, CDK12, regulates genome stability, expression of DNA repair genes, and cancer cell resistance to chemotherapy and immunotherapy. In addition to its role in mRNA biosynthesis of DNA repair genes, we show here that CDK12 phosphorylates the mRNA 5' cap-binding repressor, 4E-BP1, to promote translation of mTORC1-dependent mRNAs. In particular, we found that phosphorylation of 4E-BP1 by mTORC1 (T37 and T46) facilitates subsequent CDK12 phosphorylation at two Ser-Pro sites (S65 and T70) that control the exchange of 4E-BP1 with eIF4G at the 5' cap of and other target mRNAs.
View Article and Find Full Text PDFSpecifying the primitive streak (PS) guides stem cell differentiation in vitro; however, much remains to be learned about the transcription networks that direct anterior and posterior PS cells (APS and PPS, respectively) to differentiate to distinct mesendodermal subpopulations. Here, we show that APS genes are predominantly induced in YAP1 human embryonic stem cells (hESCs) in response to ACTIVIN. This finding establishes the Hippo effector YAP1 as a master regulator of PS specification, functioning to repress ACTIVIN-regulated APS genes in hESCs.
View Article and Find Full Text PDFHIV-1 Tat is a key regulator of viral transcription, however little is known about the mechanisms that control its turnover in T cells. Here we use a novel proteomics technique, called DiffPOP, to identify the molecular target of JIB-04, a small molecule compound that potently and selectively blocks HIV-1 Tat expression, transactivation, and virus replication in T cell lines. Mass-spectrometry analysis of whole-cell extracts from 2D10 Jurkat T cells revealed that JIB-04 targets Serine Hydroxymethyltransferase 2 (SHMT2), a regulator of glycine biosynthesis and an adaptor for the BRCC36 K63Ub-specific deubiquitinase in the BRISC complex.
View Article and Find Full Text PDFWhere direct killing is rare and niche overlap low, sympatric carnivores may appear to coexist without conflict. Interference interactions, harassment and injury from larger carnivores may still pose a risk to smaller mesopredators. Foraging theory suggests that animals should adjust their behaviour accordingly to optimise foraging efficiency and overall fitness, trading off harvest rate with costs to fitness.
View Article and Find Full Text PDFActivin/SMAD signaling in human embryonic stem cells (hESCs) ensures expression and stem cell pluripotency. In the presence of Wnt ligand, the Activin/SMAD transcription network switches to cooperate with Wnt/β-catenin and induce mesendodermal (ME) differentiation genes. We show here that the Hippo effector YAP binds to the gene enhancer and prevents the gene from being induced by Activin in proliferating hESCs.
View Article and Find Full Text PDFMyc plays important roles in cell cycle progression, cell growth, and stem cell self-renewal. Although dysregulation of Myc expression is a hallmark of human cancers, there is no Myc targeted therapy yet. Here, we report sAJM589, a novel small molecule Myc inhibitor, identified from a PCA-based high-throughput screen.
View Article and Find Full Text PDFThe Wnt3a/β-catenin and Activin/SMAD2,3 signaling pathways synergize to induce endodermal differentiation of human embryonic stem cells; however, the underlying mechanism is not well understood. Using ChIP-seq and GRO-seq analyses, we show here that Wnt3a-induced β-catenin:LEF-1 enhancers recruit cohesin to direct enhancer-promoter looping and activate mesendodermal (ME) lineage genes. Moreover, we find that LEF-1 and other hESC enhancers recruit RNAPII complexes (eRNAPII) that are highly phosphorylated at Ser5, but not Ser7.
View Article and Find Full Text PDFHIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity.
View Article and Find Full Text PDFDifferent members of the TAF family of proteins work in differentiated cells, such as motor neurons or brown fat cells, to control the expression of genes that are specific to each cell type.
View Article and Find Full Text PDFMutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes β-catenin and aberrantly reactivates Wnt/β-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for β-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of β-catenin at cell:cell adherens junctions.
View Article and Find Full Text PDFThe adaptive immune system is involved in tumor establishment and aggressiveness. Tumors of the ovaries, an immune-privileged organ, spread via transceolomic routes and rarely to distant organs. This is contrary to tumors of non-immune privileged organs, which often disseminate hematogenously to distant organs.
View Article and Find Full Text PDFMulligan et al. (2011) show here that the NAD(+)-dependent SIRT1 (H4K16; H1K26) deacetylase acts in concert with the LSD1 (H3K4) demethylase to repress Notch-induced transcription, thus coupling two distinct histone modifications at a key epigenetic switch for Notch target genes.
View Article and Find Full Text PDFThe Ski-interacting protein SKIP/SNW1 functions as both a splicing factor and a transcriptional coactivator for induced genes. We showed previously that transcription elongation factors such as SKIP are dispensable in cells subjected to DNA damage stress. However, we report here that SKIP is critical for both basal and stress-induced expression of the cell cycle arrest factor p21(Cip1).
View Article and Find Full Text PDFMoellering et al. recently reported that a cell-permeable "stapled" synthetic peptide of the Notch coactivator Mastermind is a potent dominant-negative inhibitor of oncogenic Notch signaling in T cell acute lymphoblastic leukemia. This new class of inhibitor may find broad utility in blocking protein-protein interactions that underlie many human diseases.
View Article and Find Full Text PDFResponse delays to predator attack may be adaptive, suggesting that latency to respond does not always reflect predator detection time, but can be a decision based on starvation-predation risk trade-offs. In birds, some anti-predator behaviours have been shown to be correlated with personality traits such as activity level and exploration. Here, we tested for a correlation between exploration behaviour and response latency time to a simulated fish predator attack in a fish species, juvenile convict cichlids (Amatitlania nigrofasciata).
View Article and Find Full Text PDFThe Ski-interacting protein SKIP/SNW1 associates with the P-TEFb/CDK9 elongation factor and coactivates inducible genes, including HIV-1. We show here that SKIP also associates with c-Myc and Menin, a subunit of the MLL1 histone methyltransferase (H3K4me3) complex and that HIV-1 Tat transactivation requires c-Myc and Menin, but not MLL1 or H3K4me3. RNAi-ChIP experiments reveal that SKIP acts downstream of Tat:P-TEFb to recruit c-Myc and its partner TRRAP, a scaffold for histone acetyltransferases, to the HIV-1 promoter.
View Article and Find Full Text PDFMany steps in gene expression and mRNA biosynthesis are coupled to transcription elongation and organized through the C-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAPII). We showed recently that Spt6, a transcription elongation factor and histone H3 chaperone, binds to the Ser2P CTD and recruits Iws1 and the REF1/Aly mRNA export adaptor to facilitate mRNA export. Here we show that Iws1 also recruits the HYPB/Setd2 histone methyltransferase to the RNAPII elongation complex and is required for H3K36 trimethylation (H3K36me3) across the transcribed region of the c-Myc, HIV-1, and PABPC1 genes in vivo.
View Article and Find Full Text PDFMisregulation of the Wnt pathway is a common route to cancer, including primary breast cancers. In this issue of Genes & Development, Miranda-Carboni and colleagues (3121-3134) demonstrate that the cyclin-dependent kinase inhibitor p27(Kip1) is ubiquitylated for proteasomal degradation in Wnt10b-induced mammary tumors exclusively by the Cul4A E3 ligase, which is strongly induced by Wnt signaling. The discovery of a new Wnt-induced proteolytic targeting system has important implications for the mechanism of Wnt-initiated tumorigenesis.
View Article and Find Full Text PDFP-TEFb (CycT1:Cdk9), the metazoan RNA polymerase II Ser2 C-terminal domain (CTD) kinase, regulates transcription elongation at many genes and integrates mRNA synthesis with histone modification, pre-mRNA processing, and mRNA export. Recruitment of P-TEFb to target genes requires deubiquitination of H2Bub, phosphorylation of H3S10, and the bromodomain protein, Brd4. Brd4 activates growth-related genes in the G1 phase of the cell cycle and can also tether P-TEFb to mitotic chromosomes, possibly to mark sites of active transcription throughout cell division.
View Article and Find Full Text PDFSpt6 promotes transcription elongation at many genes and functions as a histone H3 chaperone to alter chromatin structure during transcription. We show here that mammalian Spt6 binds Ser2-phosphorylated (Ser2P) RNA polymerase II (RNAPII) through a primitive SH2 domain, which recognizes phosphoserine rather than phosphotyrosine residues. Surprisingly, a point mutation in the Spt6 SH2 domain (R1358K) blocked binding to RNAPIIo without affecting transcription elongation rates in vitro.
View Article and Find Full Text PDFNuclear beta-catenin is a transcriptional coactivator of LEF-1/TCF DNA-binding proteins in the Wnt/Wg signaling pathway. Casein Kinase 2 (CK2), a positive regulator of Wnt signaling, is present in beta-catenin complexes and activated in Wnt-signaling cells. We show here that CK2 enhances beta-catenin:LEF-1 transactivation in vivo and in vitro and that beta-catenin and CK2 cycle on and off the DNA in an alternating manner with the TLE1 corepressor at Wnt target genes.
View Article and Find Full Text PDF